Format
Sort by
Items per page

Send to

Choose Destination

Selected items

Items: 1 to 20 of 225

1.

Strategy of nitrogen acquisition and utilization by carnivorous Dionaea muscipula.

Kruse J, Gao P, Honsel A, Kreuzwieser J, Burzlaff T, Alfarraj S, Hedrich R, Rennenberg H.

Oecologia. 2014 Mar;174(3):839-51. doi: 10.1007/s00442-013-2802-9. Epub 2013 Oct 19.

PMID:
24141381
2.

Integration of trap- and root-derived nitrogen nutrition of carnivorous Dionaea muscipula.

Gao P, Loeffler TS, Honsel A, Kruse J, Krol E, Scherzer S, Kreuzer I, Bemm F, Buegger F, Burzlaff T, Hedrich R, Rennenberg H.

New Phytol. 2015 Feb;205(3):1320-9. doi: 10.1111/nph.13120. Epub 2014 Oct 27.

3.

The Venus flytrap attracts insects by the release of volatile organic compounds.

Kreuzwieser J, Scheerer U, Kruse J, Burzlaff T, Honsel A, Alfarraj S, Georgiev P, Schnitzler JP, Ghirardo A, Kreuzer I, Hedrich R, Rennenberg H.

J Exp Bot. 2014 Feb;65(2):755-66. doi: 10.1093/jxb/ert455. Epub 2014 Jan 13. Erratum in: J Exp Bot. 2015 Jun;66(11):3429.

4.

The Venus Flytrap Dionaea muscipula Counts Prey-Induced Action Potentials to Induce Sodium Uptake.

Böhm J, Scherzer S, Krol E, Kreuzer I, von Meyer K, Lorey C, Mueller TD, Shabala L, Monte I, Solano R, Al-Rasheid KA, Rennenberg H, Shabala S, Neher E, Hedrich R.

Curr Biol. 2016 Feb 8;26(3):286-95. doi: 10.1016/j.cub.2015.11.057. Epub 2016 Jan 21.

5.

The carnivorous Venus flytrap uses prey-derived amino acid carbon to fuel respiration.

Fasbender L, Maurer D, Kreuzwieser J, Kreuzer I, Schulze WX, Kruse J, Becker D, Alfarraj S, Hedrich R, Werner C, Rennenberg H.

New Phytol. 2017 Apr;214(2):597-606. doi: 10.1111/nph.14404. Epub 2017 Jan 2.

PMID:
28042877
6.

The Dionaea muscipula ammonium channel DmAMT1 provides NH₄⁺ uptake associated with Venus flytrap's prey digestion.

Scherzer S, Krol E, Kreuzer I, Kruse J, Karl F, von Rüden M, Escalante-Perez M, Müller T, Rennenberg H, Al-Rasheid KA, Neher E, Hedrich R.

Curr Biol. 2013 Sep 9;23(17):1649-57. doi: 10.1016/j.cub.2013.07.028. Epub 2013 Aug 15.

7.

The Venus flytrap attracts insects by the release of volatile organic compounds.

Kreuzwieser J, Scheerer U, Kruse J, Burzlaff T, Honsel A, Alfarraj S, Georgiev P, Schnitzler JP, Ghirardo A, Kreuzer I, Hedrich R, Rennenberg H.

J Exp Bot. 2015 Jun;66(11):3429. doi: 10.1093/jxb/erv242. Epub 2015 May 21. No abstract available.

8.

Drought-Enhanced Xylem Sap Sulfate Closes Stomata by Affecting ALMT12 and Guard Cell ABA Synthesis.

Malcheska F, Ahmad A, Batool S, Müller HM, Ludwig-Müller J, Kreuzwieser J, Randewig D, Hänsch R, Mendel RR, Hell R, Wirtz M, Geiger D, Ache P, Hedrich R, Herschbach C, Rennenberg H.

Plant Physiol. 2017 Jun;174(2):798-814. doi: 10.1104/pp.16.01784. Epub 2017 Apr 26.

PMID:
28446637
9.

Calcium sensor kinase activates potassium uptake systems in gland cells of Venus flytraps.

Scherzer S, Böhm J, Krol E, Shabala L, Kreuzer I, Larisch C, Bemm F, Al-Rasheid KA, Shabala S, Rennenberg H, Neher E, Hedrich R.

Proc Natl Acad Sci U S A. 2015 Jun 9;112(23):7309-14. doi: 10.1073/pnas.1507810112. Epub 2015 May 21.

10.
11.

Insect haptoelectrical stimulation of Venus flytrap triggers exocytosis in gland cells.

Scherzer S, Shabala L, Hedrich B, Fromm J, Bauer H, Munz E, Jakob P, Al-Rascheid KAS, Kreuzer I, Becker D, Eiblmeier M, Rennenberg H, Shabala S, Bennett M, Neher E, Hedrich R.

Proc Natl Acad Sci U S A. 2017 May 2;114(18):4822-4827. doi: 10.1073/pnas.1701860114. Epub 2017 Apr 17.

12.

Osmotic stress induces inactivation of photosynthesis in guard cell protoplasts of Vicia leaves.

Goh CH, Hedrich R, Schreiber U.

Plant Cell Physiol. 2001 Oct;42(10):1186-91.

PMID:
11673636
13.

A Single-Pore Residue Renders the Arabidopsis Root Anion Channel SLAH2 Highly Nitrate Selective.

Maierhofer T, Lind C, Hüttl S, Scherzer S, Papenfuß M, Simon J, Al-Rasheid KA, Ache P, Rennenberg H, Hedrich R, Müller TD, Geiger D.

Plant Cell. 2014 Jun;26(6):2554-2567. Epub 2014 Jun 17.

14.

Arabidopsis thaliana POLYOL/MONOSACCHARIDE TRANSPORTERS 1 and 2: fructose and xylitol/H+ symporters in pollen and young xylem cells.

Klepek YS, Volke M, Konrad KR, Wippel K, Hoth S, Hedrich R, Sauer N.

J Exp Bot. 2010;61(2):537-50. doi: 10.1093/jxb/erp322. Epub 2009 Dec 6.

15.

Poplar wood rays are involved in seasonal remodeling of tree physiology.

Larisch C, Dittrich M, Wildhagen H, Lautner S, Fromm J, Polle A, Hedrich R, Rennenberg H, Müller T, Ache P.

Plant Physiol. 2012 Nov;160(3):1515-29. doi: 10.1104/pp.112.202291. Epub 2012 Sep 19.

16.

Identification of Arabidopsis thaliana phloem RNAs provides a search criterion for phloem-based transcripts hidden in complex datasets of microarray experiments.

Deeken R, Ache P, Kajahn I, Klinkenberg J, Bringmann G, Hedrich R.

Plant J. 2008 Sep;55(5):746-59. doi: 10.1111/j.1365-313X.2008.03555.x. Epub 2008 May 14.

17.

Stomatal action directly feeds back on leaf turgor: new insights into the regulation of the plant water status from non-invasive pressure probe measurements.

Ache P, Bauer H, Kollist H, Al-Rasheid KA, Lautner S, Hartung W, Hedrich R.

Plant J. 2010 Jun 1;62(6):1072-82. doi: 10.1111/j.1365-313X.2010.04213.x. Epub 2010 Mar 25.

18.

AKT2/3 subunits render guard cell K+ channels Ca2+ sensitive.

Ivashikina N, Deeken R, Fischer S, Ache P, Hedrich R.

J Gen Physiol. 2005 May;125(5):483-92. Epub 2005 Apr 11.

19.

Auxin activates KAT1 and KAT2, two K+-channel genes expressed in seedlings of Arabidopsis thaliana.

Philippar K, Ivashikina N, Ache P, Christian M, Lüthen H, Palme K, Hedrich R.

Plant J. 2004 Mar;37(6):815-27.

20.

Supplemental Content

Support Center