Format

Send to

Choose Destination
See comment in PubMed Commons below
Bioinformatics. 2009 May 15;25(10):1314-20. doi: 10.1093/bioinformatics/btp158. Epub 2009 Apr 5.

Evaluation of genome-wide association study results through development of ontology fingerprints.

Author information

  • 1Bioinformatics Graduate Program, Department of Biostatistics, Bioinformatics and Epidemiology, Medical University of South Carolina, Charleston, SC, USA.

Abstract

MOTIVATION:

Genome-wide association (GWA) studies may identify multiple variants that are associated with a disease or trait. To narrow down candidates for further validation, quantitatively assessing how identified genes relate to a phenotype of interest is important.

RESULTS:

We describe an approach to characterize genes or biological concepts (phenotypes, pathways, diseases, etc.) by ontology fingerprint--the set of Gene Ontology (GO) terms that are overrepresented among the PubMed abstracts discussing the gene or biological concept together with the enrichment p-value of these terms generated from a hypergeometric enrichment test. We then quantify the relevance of genes to the trait from a GWA study by calculating similarity scores between their ontology fingerprints using enrichment p-values. We validate this approach by correctly identifying corresponding genes for biological pathways with a 90% average area under the ROC curve (AUC). We applied this approach to rank genes identified through a GWA study that are associated with the lipid concentrations in plasma as well as to prioritize genes within linkage disequilibrium (LD) block. We found that the genes with highest scores were: ABCA1, lipoprotein lipase (LPL) and cholesterol ester transfer protein, plasma for high-density lipoprotein; low-density lipoprotein receptor, APOE and APOB for low-density lipoprotein; and LPL, APOA1 and APOB for triglyceride. In addition, we identified genes relevant to lipid metabolism from the literature even in cases where such knowledge was not reflected in current annotation of these genes. These results demonstrate that ontology fingerprints can be used effectively to prioritize genes from GWA studies for experimental validation.

PMID:
19349285
PMCID:
PMC2732313
DOI:
10.1093/bioinformatics/btp158
[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center