Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 57

1.

The game theory of Candida albicans colonization dynamics reveals host status-responsive gene expression.

Tyc KM, Herwald SE, Hogan JA, Pierce JV, Klipp E, Kumamoto CA.

BMC Syst Biol. 2016 Mar 1;10:20. doi: 10.1186/s12918-016-0268-1.

2.

Cph1p negatively regulates MDR1 involved in drug resistance in Candida albicans.

Lo HJ, Tseng KY, Kao YY, Tsao MY, Lo HL, Yang YL.

Int J Antimicrob Agents. 2015 Jun;45(6):617-21. doi: 10.1016/j.ijantimicag.2015.01.017. Epub 2015 Mar 6.

PMID:
25802233
3.

The APSES family proteins in fungi: Characterizations, evolution and functions.

Zhao Y, Su H, Zhou J, Feng H, Zhang KQ, Yang J.

Fungal Genet Biol. 2015 Aug;81:271-80. doi: 10.1016/j.fgb.2014.12.003. Epub 2014 Dec 19. Review.

PMID:
25534868
4.

Transcriptome Analysis of a Ustilago maydis ust1 Deletion Mutant Uncovers Involvement of Laccase and Polyketide Synthase Genes in Spore Development.

Islamovic E, García-Pedrajas MD, Chacko N, Andrews DL, Covert SF, Gold SE.

Mol Plant Microbe Interact. 2015 Jan;28(1):42-54. doi: 10.1094/MPMI-05-14-0133-R.

5.

Conserved and Distinct Functions of the “Stunted” (StuA)-Homolog Ust1 During Cell Differentiation in the Corn Smut Fungus Ustilago maydis.

Baeza-Montañez L, Gold SE, Espeso EA, García-Pedrajas MD.

Mol Plant Microbe Interact. 2015 Jan;28(1):86-102. doi: 10.1094/MPMI-07-14-0215-R.

6.

GST2 is required for nitrogen starvation-induced filamentous growth in Candida albicans.

Lee SH, Chung SC, Shin J, Oh KB.

J Microbiol Biotechnol. 2014 Sep;24(9):1207-15.

7.

A comprehensive functional portrait of two heat shock factor-type transcriptional regulators involved in Candida albicans morphogenesis and virulence.

Znaidi S, Nesseir A, Chauvel M, Rossignol T, d'Enfert C.

PLoS Pathog. 2013 Aug;9(8):e1003519. doi: 10.1371/journal.ppat.1003519. Epub 2013 Aug 15.

8.

Normal adaptation of Candida albicans to the murine gastrointestinal tract requires Efg1p-dependent regulation of metabolic and host defense genes.

Pierce JV, Dignard D, Whiteway M, Kumamoto CA.

Eukaryot Cell. 2013 Jan;12(1):37-49. doi: 10.1128/EC.00236-12. Epub 2012 Nov 2.

9.

Functional characterization of the small heat shock protein Hsp12p from Candida albicans.

Fu MS, De Sordi L, Mühlschlegel FA.

PLoS One. 2012;7(8):e42894. doi: 10.1371/journal.pone.0042894. Epub 2012 Aug 7.

10.

Variation in Candida albicans EFG1 expression enables host-dependent changes in colonizing fungal populations.

Pierce JV, Kumamoto CA.

MBio. 2012 Jul 24;3(4):e00117-12. doi: 10.1128/mBio.00117-12. Print 2012.

11.

Functional importance of the DNA binding activity of Candida albicans Czf1p.

Petrovska I, Kumamoto CA.

PLoS One. 2012;7(6):e39624. doi: 10.1371/journal.pone.0039624. Epub 2012 Jun 27.

12.

RNA-mediated gene silencing in Candida albicans: inhibition of hyphae formation by use of RNAi technology.

Moazeni M, Khoramizadeh MR, Kordbacheh P, Sepehrizadeh Z, Zeraati H, Noorbakhsh F, Teimoori-Toolabi L, Rezaie S.

Mycopathologia. 2012 Sep;174(3):177-85. doi: 10.1007/s11046-012-9539-6. Epub 2012 Apr 7.

PMID:
22484810
13.

Pseudohyphal regulation by the transcription factor Rfg1p in Candida albicans.

Cleary IA, Mulabagal P, Reinhard SM, Yadev NP, Murdoch C, Thornhill MH, Lazzell AL, Monteagudo C, Thomas DP, Saville SP.

Eukaryot Cell. 2010 Sep;9(9):1363-73. doi: 10.1128/EC.00088-10. Epub 2010 Jul 23.

14.

Morphogenic regulator EFG1 affects the drug susceptibilities of pathogenic Candida albicans.

Prasad T, Hameed S, Manoharlal R, Biswas S, Mukhopadhyay CK, Goswami SK, Prasad R.

FEMS Yeast Res. 2010 Aug 1;10(5):587-96. doi: 10.1111/j.1567-1364.2010.00639.x. Epub 2010 May 29.

15.

Arginine-induced germ tube formation in Candida albicans is essential for escape from murine macrophage line RAW 264.7.

Ghosh S, Navarathna DH, Roberts DD, Cooper JT, Atkin AL, Petro TM, Nickerson KW.

Infect Immun. 2009 Apr;77(4):1596-605. doi: 10.1128/IAI.01452-08. Epub 2009 Feb 2.

16.

Iron deprivation induces EFG1-mediated hyphal development in Candida albicans without affecting biofilm formation.

Hameed S, Prasad T, Banerjee D, Chandra A, Mukhopadhyay CK, Goswami SK, Lattif AA, Chandra J, Mukherjee PK, Ghannoum MA, Prasad R.

FEMS Yeast Res. 2008 Aug;8(5):744-55. doi: 10.1111/j.1567-1364.2008.00394.x. Epub 2008 Jun 10.

17.

Functional mapping of the Candida albicans Efg1 regulator.

Noffz CS, Liedschulte V, Lengeler K, Ernst JF.

Eukaryot Cell. 2008 May;7(5):881-93. doi: 10.1128/EC.00033-08. Epub 2008 Mar 28.

18.

Self-regulation of Candida albicans population size during GI colonization.

White SJ, Rosenbach A, Lephart P, Nguyen D, Benjamin A, Tzipori S, Whiteway M, Mecsas J, Kumamoto CA.

PLoS Pathog. 2007 Dec;3(12):e184.

19.
20.

Transcriptional and physiological adaptation to defective protein-O-mannosylation in Candida albicans.

Cantero PD, Lengsfeld C, Prill SK, Subanović M, Román E, Pla J, Ernst JF.

Mol Microbiol. 2007 May;64(4):1115-28.

Supplemental Content

Loading ...
Support Center