Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 43

1.

Protein misfolding in endoplasmic reticulum stress with applications to renal diseases.

Nademi S, Dickhout JG.

Adv Protein Chem Struct Biol. 2019;118:217-247. doi: 10.1016/bs.apcsb.2019.08.001. Epub 2019 Sep 23.

PMID:
31928726
2.

Endoplasmic reticulum stress inhibition blunts the development of essential hypertension in the spontaneously hypertensive rat.

Naiel S, Carlisle RE, Lu C, Tat V, Dickhout JG.

Am J Physiol Heart Circ Physiol. 2019 May 1;316(5):H1214-H1223. doi: 10.1152/ajpheart.00523.2018. Epub 2019 Mar 8.

PMID:
30848678
3.

IL-6 mediates ER expansion during hyperpolarization of alternatively activated macrophages.

Ayaub EA, Tandon K, Padwal M, Imani J, Patel H, Dubey A, Mekhael O, Upagupta C, Ayoub A, Dvorkin-Gheva A, Murphy J, Kolb PS, Lhotak S, Dickhout JG, Austin RC, Kolb MRJ, Richards CD, Ask K.

Immunol Cell Biol. 2019 Feb;97(2):203-217. doi: 10.1111/imcb.12212. Epub 2018 Nov 14.

PMID:
30298952
4.

Analysis of the potency of various low molecular weight chemical chaperones to prevent protein aggregation.

Upagupta C, Carlisle RE, Dickhout JG.

Biochem Biophys Res Commun. 2017 Apr 22;486(1):163-170. doi: 10.1016/j.bbrc.2017.03.019. Epub 2017 Mar 8.

PMID:
28285140
5.

Endoplasmic reticulum stress inhibition attenuates hypertensive chronic kidney disease through reduction in proteinuria.

Mohammed-Ali Z, Lu C, Marway MK, Carlisle RE, Ask K, Lukic D, Krepinsky JC, Dickhout JG.

Sci Rep. 2017 Feb 2;7:41572. doi: 10.1038/srep41572.

6.

Endoplasmic reticulum stress inhibition limits the progression of chronic kidney disease in the Dahl salt-sensitive rat.

Yum V, Carlisle RE, Lu C, Brimble E, Chahal J, Upagupta C, Ask K, Dickhout JG.

Am J Physiol Renal Physiol. 2017 Jan 1;312(1):F230-F244. doi: 10.1152/ajprenal.00119.2016. Epub 2016 Nov 9.

7.

Alterations to the middle cerebral artery of the hypertensive-arthritic rat model potentiates intracerebral hemorrhage.

Randell A, Chokshi K, Kane B, Chang H, Naiel S, Dickhout JG, Daneshtalab N.

PeerJ. 2016 Nov 3;4:e2608. eCollection 2016.

8.

Vascular structural and functional changes: their association with causality in hypertension: models, remodeling and relevance.

Lee RM, Dickhout JG, Sandow SL.

Hypertens Res. 2017 Apr;40(4):311-323. doi: 10.1038/hr.2016.145. Epub 2016 Oct 27. Review.

PMID:
27784889
9.

GRP78 and CHOP modulate macrophage apoptosis and the development of bleomycin-induced pulmonary fibrosis.

Ayaub EA, Kolb PS, Mohammed-Ali Z, Tat V, Murphy J, Bellaye PS, Shimbori C, Boivin FJ, Lai R, Lynn EG, Lhoták Š, Bridgewater D, Kolb MR, Inman MD, Dickhout JG, Austin RC, Ask K.

J Pathol. 2016 Aug;239(4):411-25. doi: 10.1002/path.4738. Epub 2016 Jun 7.

PMID:
27135434
10.

Endoplasmic reticulum stress inhibition reduces hypertension through the preservation of resistance blood vessel structure and function.

Carlisle RE, Werner KE, Yum V, Lu C, Tat V, Memon M, No Y, Ask K, Dickhout JG.

J Hypertens. 2016 Aug;34(8):1556-69. doi: 10.1097/HJH.0000000000000943.

PMID:
27115336
11.

Major comorbid disease processes associated with increased incidence of acute kidney injury.

Farooqi S, Dickhout JG.

World J Nephrol. 2016 Mar 6;5(2):139-46. doi: 10.5527/wjn.v5.i2.139. Review.

12.

Binding of anti-GRP78 autoantibodies to cell surface GRP78 increases tissue factor procoagulant activity via the release of calcium from endoplasmic reticulum stores.

Al-Hashimi AA, Caldwell J, Gonzalez-Gronow M, Pizzo SV, Aboumrad D, Pozza L, Al-Bayati H, Weitz JI, Stafford A, Chan H, Kapoor A, Jacobsen DW, Dickhout JG, Austin RC.

J Biol Chem. 2015 Nov 27;290(48):28725. doi: 10.1074/jbc.A110.119107. No abstract available.

13.

Acute kidney injury: preclinical innovations, challenges, and opportunities for translation.

Silver SA, Cardinal H, Colwell K, Burger D, Dickhout JG.

Can J Kidney Health Dis. 2015 Sep 1;2:30. doi: 10.1186/s40697-015-0062-9. eCollection 2015. Review.

14.

Development of a Model of Chronic Kidney Disease in the C57BL/6 Mouse with Properties of Progressive Human CKD.

Mohammed-Ali Z, Cruz GL, Lu C, Carlisle RE, Werner KE, Ask K, Dickhout JG.

Biomed Res Int. 2015;2015:172302. doi: 10.1155/2015/172302. Epub 2015 May 3.

15.

Crosstalk between the unfolded protein response and NF-κB-mediated inflammation in the progression of chronic kidney disease.

Mohammed-Ali Z, Cruz GL, Dickhout JG.

J Immunol Res. 2015;2015:428508. doi: 10.1155/2015/428508. Epub 2015 Apr 21. Review.

16.

The therapeutic effects of 4-phenylbutyric acid in maintaining proteostasis.

Kolb PS, Ayaub EA, Zhou W, Yum V, Dickhout JG, Ask K.

Int J Biochem Cell Biol. 2015 Apr;61:45-52. doi: 10.1016/j.biocel.2015.01.015. Epub 2015 Feb 7. Review.

PMID:
25660369
17.

SREBP-1 Mediates Angiotensin II-Induced TGF-β1 Upregulation and Glomerular Fibrosis.

Wang TN, Chen X, Li R, Gao B, Mohammed-Ali Z, Lu C, Yum V, Dickhout JG, Krepinsky JC.

J Am Soc Nephrol. 2015 Aug;26(8):1839-54. doi: 10.1681/ASN.2013121332. Epub 2014 Nov 14.

18.

4-Phenylbutyrate inhibits tunicamycin-induced acute kidney injury via CHOP/GADD153 repression.

Carlisle RE, Brimble E, Werner KE, Cruz GL, Ask K, Ingram AJ, Dickhout JG.

PLoS One. 2014 Jan 8;9(1):e84663. doi: 10.1371/journal.pone.0084663. eCollection 2014.

19.

Decreased endogenous production of hydrogen sulfide accelerates atherosclerosis.

Mani S, Li H, Untereiner A, Wu L, Yang G, Austin RC, Dickhout JG, Lhoták Š, Meng QH, Wang R.

Circulation. 2013 Jun 25;127(25):2523-34. doi: 10.1161/CIRCULATIONAHA.113.002208. Epub 2013 May 23.

PMID:
23704252
20.

Deficiency of TDAG51 protects against atherosclerosis by modulating apoptosis, cholesterol efflux, and peroxiredoxin-1 expression.

Hossain GS, Lynn EG, Maclean KN, Zhou J, Dickhout JG, Lhoták S, Trigatti B, Capone J, Rho J, Tang D, McCulloch CA, Al-Bondokji I, Malloy MJ, Pullinger CR, Kane JP, Li Y, Shiffman D, Austin RC.

J Am Heart Assoc. 2013 May 17;2(3):e000134. doi: 10.1161/JAHA.113.000134.

Supplemental Content

Loading ...
Support Center