Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 24

1.

Sequential stream segregation in normally-hearing and cochlear-implant listeners.

Tejani VD, Schvartz-Leyzac KC, Chatterjee M.

J Acoust Soc Am. 2017 Jan;141(1):50. doi: 10.1121/1.4973516.

2.

Deficits in the Sensitivity to Pitch Sweeps by School-Aged Children Wearing Cochlear Implants.

Deroche ML, Kulkarni AM, Christensen JA, Limb CJ, Chatterjee M.

Front Neurosci. 2016 Mar 3;10:73. doi: 10.3389/fnins.2016.00073.

3.

Envelope Interactions in Multi-Channel Amplitude Modulation Frequency Discrimination by Cochlear Implant Users.

Galvin JJ 3rd, Oba SI, Başkent D, Chatterjee M, Fu QJ.

PLoS One. 2015 Oct 2;10(10):e0139546. doi: 10.1371/journal.pone.0139546.

4.

Fundamental-frequency discrimination using noise-band-vocoded harmonic complexes in older listeners with normal hearing.

Schvartz-Leyzac KC, Chatterjee M.

J Acoust Soc Am. 2015 Sep;138(3):1687-95. doi: 10.1121/1.4929938.

5.

Voice emotion recognition by cochlear-implanted children and their normally-hearing peers.

Chatterjee M, Zion DJ, Deroche ML, Burianek BA, Limb CJ, Goren AP, Kulkarni AM, Christensen JA.

Hear Res. 2015 Apr;322:151-62. doi: 10.1016/j.heares.2014.10.003.

6.

Deficits in the pitch sensitivity of cochlear-implanted children speaking English or Mandarin.

Deroche ML, Lu HP, Limb CJ, Lin YS, Chatterjee M.

Front Neurosci. 2014 Sep 9;8:282. doi: 10.3389/fnins.2014.00282.

7.

Sensitivity to pulse phase duration in cochlear implant listeners: effects of stimulation mode.

Chatterjee M, Kulkarni AM.

J Acoust Soc Am. 2014 Aug;136(2):829-40. doi: 10.1121/1.4884773.

8.

The use of auditory and visual context in speech perception by listeners with normal hearing and listeners with cochlear implants.

Winn MB, Rhone AE, Chatterjee M, Idsardi WJ.

Front Psychol. 2013 Nov 5;4:824. doi: 10.3389/fpsyg.2013.00824.

9.

Toddlers' recognition of noise-vocoded speech.

Newman R, Chatterjee M.

J Acoust Soc Am. 2013 Jan;133(1):483-94. doi: 10.1121/1.4770241.

10.

Acoustic cue integration in speech intonation recognition with cochlear implants.

Peng SC, Chatterjee M, Lu N.

Trends Amplif. 2012 Jun;16(2):67-82. doi: 10.1177/1084713812451159.

11.

Sensitivity of school-aged children to pitch-related cues.

Deroche ML, Zion DJ, Schurman JR, Chatterjee M.

J Acoust Soc Am. 2012 Apr;131(4):2938-47. doi: 10.1121/1.3692230.

12.

The use of acoustic cues for phonetic identification: effects of spectral degradation and electric hearing.

Winn MB, Chatterjee M, Idsardi WJ.

J Acoust Soc Am. 2012 Feb;131(2):1465-79. doi: 10.1121/1.3672705.

13.

Gender identification in younger and older adults: use of spectral and temporal cues in noise-vocoded speech.

Schvartz KC, Chatterjee M.

Ear Hear. 2012 May-Jun;33(3):411-20. doi: 10.1097/AUD.0b013e31823d78dc.

14.

Detection and rate discrimination of amplitude modulation in electrical hearing.

Chatterjee M, Oberzut C.

J Acoust Soc Am. 2011 Sep;130(3):1567-80. doi: 10.1121/1.3621445.

15.

Recognition of temporally interrupted and spectrally degraded sentences with additional unprocessed low-frequency speech.

Başkent D, Chatterjee M.

Hear Res. 2010 Dec 1;270(1-2):127-33. doi: 10.1016/j.heares.2010.08.011.

16.

Recognition of interrupted sentences under conditions of spectral degradation.

Chatterjee M, Peredo F, Nelson D, Başkent D.

J Acoust Soc Am. 2010 Feb;127(2):EL37-41. doi: 10.1121/1.3284544.

17.

A relation between electrode discrimination and amplitude modulation detection by cochlear implant listeners.

Chatterjee M, Yu J.

J Acoust Soc Am. 2010 Jan;127(1):415-26. doi: 10.1121/1.3257591.

18.
19.

Recognition of spectrally degraded phonemes by younger, middle-aged, and older normal-hearing listeners.

Schvartz KC, Chatterjee M, Gordon-Salant S.

J Acoust Soc Am. 2008 Dec;124(6):3972-88. doi: 10.1121/1.2997434.

20.

Supplemental Content

Loading ...
Support Center