Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 103

1.

C. elegans as a model system to accelerate discovery for Parkinson disease.

Martinez BA, Caldwell KA, Caldwell GA.

Curr Opin Genet Dev. 2017 Feb 24;44:102-109. doi: 10.1016/j.gde.2017.02.011. [Epub ahead of print] Review.

PMID:
28242493
2.

Chemical Compensation of Mitochondrial Phospholipid Depletion in Yeast and Animal Models of Parkinson's Disease.

Wang S, Zhang S, Xu C, Barron A, Galiano F, Patel D, Lee YJ, Caldwell GA, Caldwell KA, Witt SN.

PLoS One. 2016 Oct 13;11(10):e0164465. doi: 10.1371/journal.pone.0164465.

3.

A bacterial metabolite induces glutathione-tractable proteostatic damage, proteasomal disturbances, and PINK1-dependent autophagy in C. elegans.

Martinez BA, Kim H, Ray A, Caldwell GA, Caldwell KA.

Cell Death Dis. 2015 Oct 15;6:e1908. doi: 10.1038/cddis.2015.270.

4.

RTCB-1 mediates neuroprotection via XBP-1 mRNA splicing in the unfolded protein response pathway.

Ray A, Zhang S, Rentas C, Caldwell KA, Caldwell GA.

J Neurosci. 2014 Nov 26;34(48):16076-85. doi: 10.1523/JNEUROSCI.1945-14.2014.

5.

Glutaredoxin deficiency exacerbates neurodegeneration in C. elegans models of Parkinson's disease.

Johnson WM, Yao C, Siedlak SL, Wang W, Zhu X, Caldwell GA, Wilson-Delfosse AL, Mieyal JJ, Chen SG.

Hum Mol Genet. 2015 Mar 1;24(5):1322-35. doi: 10.1093/hmg/ddu542.

6.

Phenazine derivatives cause proteotoxicity and stress in C. elegans.

Ray A, Rentas C, Caldwell GA, Caldwell KA.

Neurosci Lett. 2015 Jan 1;584:23-7. doi: 10.1016/j.neulet.2014.09.055.

7.

Phosphatidylethanolamine deficiency disrupts α-synuclein homeostasis in yeast and worm models of Parkinson disease.

Wang S, Zhang S, Liou LC, Ren Q, Zhang Z, Caldwell GA, Caldwell KA, Witt SN.

Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):E3976-85. doi: 10.1073/pnas.1411694111.

8.

Calcineurin determines toxic versus beneficial responses to α-synuclein.

Caraveo G, Auluck PK, Whitesell L, Chung CY, Baru V, Mosharov EV, Yan X, Ben-Johny M, Soste M, Picotti P, Kim H, Caldwell KA, Caldwell GA, Sulzer D, Yue DT, Lindquist S.

Proc Natl Acad Sci U S A. 2014 Aug 26;111(34):E3544-52. doi: 10.1073/pnas.1413201111.

9.

The glycolytic enzyme, GPI, is a functionally conserved modifier of dopaminergic neurodegeneration in Parkinson's models.

Knight AL, Yan X, Hamamichi S, Ajjuri RR, Mazzulli JR, Zhang MW, Daigle JG, Zhang S, Borom AR, Roberts LR, Lee SK, DeLeon SM, Viollet-Djelassi C, Krainc D, O'Donnell JM, Caldwell KA, Caldwell GA.

Cell Metab. 2014 Jul 1;20(1):145-57. doi: 10.1016/j.cmet.2014.04.017.

10.

Clioquinol promotes the degradation of metal-dependent amyloid-β (Aβ) oligomers to restore endocytosis and ameliorate Aβ toxicity.

Matlack KE, Tardiff DF, Narayan P, Hamamichi S, Caldwell KA, Caldwell GA, Lindquist S.

Proc Natl Acad Sci U S A. 2014 Mar 18;111(11):4013-8. doi: 10.1073/pnas.1402228111.

11.

The effects of pdr1, djr1.1 and pink1 loss in manganese-induced toxicity and the role of α-synuclein in C. elegans.

Bornhorst J, Chakraborty S, Meyer S, Lohren H, Brinkhaus SG, Knight AL, Caldwell KA, Caldwell GA, Karst U, Schwerdtle T, Bowman A, Aschner M.

Metallomics. 2014 Mar;6(3):476-90. doi: 10.1039/c3mt00325f.

12.

Potentiated Hsp104 variants antagonize diverse proteotoxic misfolding events.

Jackrel ME, DeSantis ME, Martinez BA, Castellano LM, Stewart RM, Caldwell KA, Caldwell GA, Shorter J.

Cell. 2014 Jan 16;156(1-2):170-82. doi: 10.1016/j.cell.2013.11.047.

13.

Mitochondrial dysfunction, oxidative stress, and neurodegeneration elicited by a bacterial metabolite in a C. elegans Parkinson's model.

Ray A, Martinez BA, Berkowitz LA, Caldwell GA, Caldwell KA.

Cell Death Dis. 2014 Jan 9;5:e984. doi: 10.1038/cddis.2013.513.

14.

TorsinA rescues ER-associated stress and locomotive defects in C. elegans models of ALS.

Thompson ML, Chen P, Yan X, Kim H, Borom AR, Roberts NB, Caldwell KA, Caldwell GA.

Dis Model Mech. 2014 Feb;7(2):233-43. doi: 10.1242/dmm.013615.

15.

Yeast reveal a "druggable" Rsp5/Nedd4 network that ameliorates α-synuclein toxicity in neurons.

Tardiff DF, Jui NT, Khurana V, Tambe MA, Thompson ML, Chung CY, Kamadurai HB, Kim HT, Lancaster AK, Caldwell KA, Caldwell GA, Rochet JC, Buchwald SL, Lindquist S.

Science. 2013 Nov 22;342(6161):979-83. doi: 10.1126/science.1245321.

16.

Invertebrate models of dystonia.

Caldwell KA, Shu Y, Roberts NB, Caldwell GA, O'Donnell JM.

Curr Neuropharmacol. 2013 Jan;11(1):16-29. doi: 10.2174/157015913804999504.

17.

Protective role of DNJ-27/ERdj5 in Caenorhabditis elegans models of human neurodegenerative diseases.

Muñoz-Lobato F, Rodríguez-Palero MJ, Naranjo-Galindo FJ, Shephard F, Gaffney CJ, Szewczyk NJ, Hamamichi S, Caldwell KA, Caldwell GA, Link CD, Miranda-Vizuete A.

Antioxid Redox Signal. 2014 Jan 10;20(2):217-35. doi: 10.1089/ars.2012.5051.

18.

Lysosomal impairment in Parkinson's disease.

Dehay B, Martinez-Vicente M, Caldwell GA, Caldwell KA, Yue Z, Cookson MR, Klein C, Vila M, Bezard E.

Mov Disord. 2013 Jun;28(6):725-32. doi: 10.1002/mds.25462. Review.

19.

Valproic acid ameliorates C. elegans dopaminergic neurodegeneration with implications for ERK-MAPK signaling.

Kautu BB, Carrasquilla A, Hicks ML, Caldwell KA, Caldwell GA.

Neurosci Lett. 2013 Apr 29;541:116-9. doi: 10.1016/j.neulet.2013.02.026.

20.

Identification of novel ATP13A2 interactors and their role in α-synuclein misfolding and toxicity.

Usenovic M, Knight AL, Ray A, Wong V, Brown KR, Caldwell GA, Caldwell KA, Stagljar I, Krainc D.

Hum Mol Genet. 2012 Sep 1;21(17):3785-94. doi: 10.1093/hmg/dds206.

Supplemental Content

Loading ...
Support Center