Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 72

1.

Identification of Cry48Aa/Cry49Aa toxin ligands in the midgut of Culex quinquefasciatus larvae.

Rezende TMT, Romão TP, Batista M, Berry C, Adang MJ, Silva-Filha MHNL.

Insect Biochem Mol Biol. 2017 Aug 3;88:63-70. doi: 10.1016/j.ibmb.2017.08.001. [Epub ahead of print]

PMID:
28780070
2.

High throughput sequencing reveals Drosophila suzukii responses to insecticides.

Mishra R, Chiu JC, Hua G, Tawari NR, Adang MJ, Sial AA.

Insect Sci. 2017 Jun 21. doi: 10.1111/1744-7917.12498. [Epub ahead of print]

PMID:
28636268
3.

Effects and mechanisms of Bacillus thuringiensis crystal toxins for mosquito larvae.

Zhang Q, Hua G, Adang MJ.

Insect Sci. 2016 Sep 15. doi: 10.1111/1744-7917.12401. [Epub ahead of print] Review.

PMID:
27628909
4.

Anopheles gambiae Ag55 cell line as a model for Lysinibacillus sphaericus Bin toxin action.

Hire RS, Hua G, Zhang Q, Mishra R, Adang MJ.

J Invertebr Pathol. 2015 Nov;132:105-10. doi: 10.1016/j.jip.2015.09.009. Epub 2015 Sep 25.

PMID:
26408969
5.

Generation of a Transcriptome in a Model Lepidopteran Pest, Heliothis virescens, Using Multiple Sequencing Strategies for Profiling Midgut Gene Expression.

Perera OP, Shelby KS, Popham HJ, Gould F, Adang MJ, Jurat-Fuentes JL.

PLoS One. 2015 Jun 5;10(6):e0128563. doi: 10.1371/journal.pone.0128563. eCollection 2015. Erratum in: PLoS One. 2015;10(7):e0133948.

6.

Crystal structure of Cry51Aa1: A potential novel insecticidal aerolysin-type β-pore-forming toxin from Bacillus thuringiensis.

Xu C, Chinte U, Chen L, Yao Q, Meng Y, Zhou D, Bi LJ, Rose J, Adang MJ, Wang BC, Yu Z, Sun M.

Biochem Biophys Res Commun. 2015 Jul 3;462(3):184-9. doi: 10.1016/j.bbrc.2015.04.068. Epub 2015 May 7.

PMID:
25957471
7.

Chitosan/DsiRNA nanoparticle targeting identifies AgCad1 cadherin in Anopheles gambiae larvae as an in vivo receptor of Cry11Ba toxin of Bacillus thuringiensis subsp. jegathesan.

Zhang Q, Hua G, Adang MJ.

Insect Biochem Mol Biol. 2015 May;60:33-8. doi: 10.1016/j.ibmb.2015.03.001. Epub 2015 Mar 7.

PMID:
25758367
8.

Bt toxin modification for enhanced efficacy.

Deist BR, Rausch MA, Fernandez-Luna MT, Adang MJ, Bonning BC.

Toxins (Basel). 2014 Oct 22;6(10):3005-27. doi: 10.3390/toxins6103005. Review.

9.

A coleopteran cadherin fragment synergizes toxicity of Bacillus thuringiensis toxins Cry3Aa, Cry3Bb, and Cry8Ca against lesser mealworm, Alphitobius diaperinus (Coleoptera: Tenebrionidae).

Park Y, Hua G, Taylor MD, Adang MJ.

J Invertebr Pathol. 2014 Nov;123:1-5. doi: 10.1016/j.jip.2014.08.008. Epub 2014 Sep 8.

PMID:
25218400
10.

Cadherin AdCad1 in Alphitobius diaperinus larvae is a receptor of Cry3Bb toxin from Bacillus thuringiensis.

Hua G, Park Y, Adang MJ.

Insect Biochem Mol Biol. 2014 Feb;45:11-7. doi: 10.1016/j.ibmb.2013.10.007. Epub 2013 Nov 10.

PMID:
24225445
11.

Analyses of α-amylase and α-glucosidase in the malaria vector mosquito, Anopheles gambiae, as receptors of Cry11Ba toxin of Bacillus thuringiensis subsp. jegathesan.

Zhang Q, Hua G, Bayyareddy K, Adang MJ.

Insect Biochem Mol Biol. 2013 Oct;43(10):907-15. doi: 10.1016/j.ibmb.2013.07.003. Epub 2013 Jul 18.

PMID:
23872242
12.

AgCad2 cadherin in Anopheles gambiae larvae is a putative receptor of Cry11Ba toxin of Bacillus thuringiensis subsp. jegathesan.

Hua G, Zhang Q, Zhang R, Abdullah AM, Linser PJ, Adang MJ.

Insect Biochem Mol Biol. 2013 Feb;43(2):153-61. doi: 10.1016/j.ibmb.2012.11.007. Epub 2012 Dec 8.

PMID:
23231770
13.

Proteome analysis of Cry4Ba toxin-interacting Aedes aegypti lipid rafts using geLC-MS/MS.

Bayyareddy K, Zhu X, Orlando R, Adang MJ.

J Proteome Res. 2012 Dec 7;11(12):5843-55. doi: 10.1021/pr3006167. Epub 2012 Nov 27.

14.

Larval midgut modifications associated with Bti resistance in the yellow fever mosquito using proteomic and transcriptomic approaches.

Tetreau G, Bayyareddy K, Jones CM, Stalinski R, Riaz MA, Paris M, David JP, Adang MJ, Després L.

BMC Genomics. 2012 Jun 15;13:248.

15.

Differential protection of Cry1Fa toxin against Spodoptera frugiperda larval gut proteases by cadherin orthologs correlates with increased synergism.

Rahman K, Abdullah MA, Ambati S, Taylor MD, Adang MJ.

Appl Environ Microbiol. 2012 Jan;78(2):354-62. doi: 10.1128/AEM.06212-11. Epub 2011 Nov 11.

16.

Synergistic and inhibitory effects of aminopeptidase peptides on Bacillus thuringiensis Cry11Ba toxicity in the mosquito Anopheles gambiae.

Zhang R, Hua G, Urbauer JL, Adang MJ.

Biochemistry. 2010 Oct 5;49(39):8512-9. doi: 10.1021/bi1009908. Epub 2010 Sep 9.

PMID:
20809561
17.

Cadherin fragments from Anopheles gambiae synergize Bacillus thuringiensis Cry4Ba's toxicity against Aedes aegypti larvae.

Park Y, Hua G, Abdullah MA, Rahman K, Adang MJ.

Appl Environ Microbiol. 2009 Nov;75(22):7280-2. doi: 10.1128/AEM.01870-09. Epub 2009 Oct 2.

18.

Anopheles gambiae alkaline phosphatase is a functional receptor of Bacillus thuringiensis jegathesan Cry11Ba toxin.

Hua G, Zhang R, Bayyareddy K, Adang MJ.

Biochemistry. 2009 Oct 20;48(41):9785-93. doi: 10.1021/bi9014538.

PMID:
19747003
19.

Cloning and characterization of the Cry1Ac-binding alkaline phosphatase (HvALP) from Heliothis virescens.

Perera OP, Willis JD, Adang MJ, Jurat-Fuentes JL.

Insect Biochem Mol Biol. 2009 Apr;39(4):294-302. doi: 10.1016/j.ibmb.2009.01.006. Epub 2009 Feb 7.

PMID:
19552892

Supplemental Content

Loading ...
Support Center