Send to

Choose Destination

See 1 citation found by title matching your search:

Cell Signal. 2011 May;23(5):866-75. doi: 10.1016/j.cellsig.2011.01.012. Epub 2011 Jan 22.

Activation of the PI3K pathway increases TLR-induced TNF-α and IL-6 but reduces IL-1β production in mast cells.

Author information

Department of Biochemistry and Molecular Immunology, Institute of Biochemistry and Molecular Biology, University Clinic, RWTH Aachen University, Aachen, Germany.


Recognition of bacterial constituents by mast cells (MCs) is dependent on the presence of pattern recognition receptors, such as Toll-like receptors (TLRs). The final cellular response, however, depends on the influence of multiple environmental factors. In the current study we tested the hypothesis that the PI3K-activating ligands insulin-like growth factor-1 (IGF-1), insulin, antigen, and Steel Factor (SF) are able to modulate the TLR4-mediated production of proinflammatory cytokines in murine MCs. Costimulation with any of these ligands caused increased LPS-triggered secretion of IL-6 and TNF-α, but attenuated the production of IL-1β, though all three cytokines were produced in an NFκB-dependent manner. The pan-specific PI3K-inhibitor Wortmannin reverted the altered production of these cytokines. In agreement, MCs deficient for SHIP1, a negative regulator of the PI3K pathway, showed augmented secretion of IL-6/TNF-α and reduced production of IL-1β in response to LPS alone. The differential effects of IGF-1 on TLR4-mediated cytokine production were also observed in the context of TLR2 and IL-33 receptor-mediated MC activation. Importantly, these effects were seen in both bone marrow-derived and peritoneal MCs, suggesting general relevance for MCs. Using pharmacological and genetic tools, we could show that the p110δ isoform of PI3K is strongly implicated in SF-triggered suppression of LPS-induced IL-1β production. Costimulation with antigen was affected to a lesser extent. In conclusion, NFκB-dependent production of proinflammatory cytokines in MCs is differentially controlled by PI3K-activating ligand/receptor systems.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center