Format

Send to

Choose Destination
Mol Cell Biol. 1998 Dec;18(12):7584-9.

Maturation of human cyclin E requires the function of eukaryotic chaperonin CCT.

Author information

1
Department of Molecular Biology, Scripps Research Institute, La Jolla, California 92037, USA.

Abstract

Cyclin E, a partner of the cyclin-dependent kinase Cdk2, has been implicated in positive control of the G1/S phase transition. Whereas degradation of cyclin E has been shown to be exquisitely regulated by ubiquitination and proteasomal action, little is known about posttranscriptional aspects of its biogenesis. In a yeast-based screen designed to identify human proteins that interact with human cyclin E, we identified components of the eukaryotic cytosolic chaperonin CCT. We found that the endogenous CCT complex in yeast was essential for the maturation of cyclin E in vivo. Under conditions of impaired CCT function, cyclin E failed to accumulate. Furthermore, newly translated cyclin E, both in vitro in reticulocyte lysate and in vivo in human cells in culture, is efficiently bound and processed by the CCT. In vitro, in the presence of ATP, the bound protein is folded and released in order to become associated with Cdk2. Thus, both the acquisition of the native state and turnover of cyclin E involve ATP-dependent processes mediated by large oligomeric assemblies.

PMID:
9819444
PMCID:
PMC109339
DOI:
10.1128/mcb.18.12.7584
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center