Send to

Choose Destination
See comment in PubMed Commons below
Eur J Neurosci. 1997 Apr;9(4):627-36.

The synapse between LE sensory neurons and gill motoneurons makes only a small contribution to the Aplysia gill-withdrawal reflex.

Author information

Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA.


The monosynaptic connection between the mechano-sensory neurons in the LE cluster and gill motoneurons has been extensively studied and used as a model for the gill-withdrawal reflex and its behavioural plasticity. In an attempt to evaluate the contribution of this synapse to the behaviour, we used voltage-sensitive dye recording to determine the number of activated LE neurons and the number of spikes made by each neuron in response to a light touch. In five preparations, light touch activated a median of five sensory cells with a median of 1.6 spikes per cell. From a comparison of the sizes of the motoneuron synaptic potentials elicited by LE spikes and elicited by a light siphon touch, we estimate that the LE sensory neurons contribute approximately 5% of the motoneuron synaptic potential in response to this touch. This result casts doubt on the validity of using this synaptic connection as a model for gill-withdrawal behaviour. Siphon nerve recordings reveal the existence of short-latency, low-threshold neurons that may provide much of the sensory input in response to a light touch.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center