Send to

Choose Destination
J Cell Biochem Suppl. 1996;25:15-22.

Genetic susceptibility to cancer from exogenous and endogenous exposures.

Author information

Department of Preventive Medicine, University of Southern California, Los Angeles 90033-0800, USA.


The past four decades of epidemiological research have yielded valuable information on the risks of populations to environmental exposures such as tobacco, asbestos, and dietary components. Prevention efforts have been focused on large-scale population-based interventions to minimize exposure to such external carcinogens. While some cancers are beginning to show a decline from changing environmental exposures, hormone-related cancers, such as breast and prostate, are becoming more prevalent. The development of these cancers appears to be closely related to endogenous exposures to circulating steroid hormones. Although prevention trials using antihormone agents are proving successful in some instances, the long-term control of these cancers necessitates a clearer understanding of the metabolism and transport of the relevant hormone in vivo. The revolution in molecular biology has provided powerful genetic tools for evaluating mechanisms of cancer causation as well as the potential to better define individual susceptibility. Using tobacco exposure as an example, we and others have demonstrated that polymorphisms in genes controlling aromatic amine metabolism provide at least a partial explanation for ethnic and individual susceptibility to bladder cancer. Similar studies have examined genetic polymorphisms in the metabolism of tobacco smoke and lung cancer risk, red meat and colorectal cancer, and aflatoxin and liver cancer. Our current studies have pursued a similar paradigm of genetic polymorphism and individual cancer susceptibility in prostate and breast carcinogenesis. We are evaluating polymorphisms in the steroid 5 alpha-reductase type II and androgen receptor genes in relation to prostate cancer based on the evidence that intracellular dihydrotestosterone is the critical "carcinogen." We are pursuing genetic polymorphisms affecting estradiol metabolism, including those in the 17 beta-hydroxysteroid dehydrogenase 2 and estrogen receptor genes as they relate to susceptibility to breast cancer. The potential role of a polymorphism in the cytochrome P450c 17 alpha gene in both breast and prostate cancers is also being examined.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center