Send to

Choose Destination
J Clin Invest. 1996 Jul 15;98(2):513-20.

Activation of endogenous deltaF508 cystic fibrosis transmembrane conductance regulator by phosphodiesterase inhibition.

Author information

Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio 44106-4948, USA.


Many heterologously expressed mutants of the cystic fibrosis transmembrane conductance regulator (CFTR) exhibit residual chloride channel activity that can be stimulated by agonists of the adenylate cyclase/protein kinase A pathway. Because of clinical implications for cystic fibrosis of activating mutants in vivo, we are investigating whether deltaF508, the most common disease-associated CFTR mutation, can be activated in airway epithelial cells. We have found that, 36Cl- efflux can be stimulated 19-61% above baseline by beta-adrenoreceptor agonists and cGI-phosphodiesterase inhibitors in transformed nasal polyp (CF-T43) cells homozygous for the deltaF508 mutation. The increase in 36Cl- permeability is diminished by protein kinase A inhibitors and is not mediated by an increase in intracellular calcium concentrations. Preincubation of CF-T43 cells with CFTR anti-sense oligonucleotides prevented an increase in 36Cl- efflux in response to beta-agonist and phosphodiesterase inhibitor. Primary cells isolated from CF nasal polyps gave similar results. These data indicate that endogenous levels of deltaF508 protein can be stimulated to increase 36Cl- permeability in airway epithelial cells.

[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Supplemental Content

Full text links

Icon for American Society for Clinical Investigation Icon for PubMed Central
Loading ...
Support Center