Send to

Choose Destination
See comment in PubMed Commons below
J Invest Dermatol. 1993 Feb;100(2 Suppl):176S-185S.

White mutants in mice shedding light on humans.

Author information

Yale University School of Medicine, Department of Dermatology, New Haven, Connecticut 06510-8059.


In this article we describe the rapid advances made in the molecular genetics of three inherited pigmentation disorders: albinism, piebaldism, and vitiligo, all of which throw light on normal pigment cell function. The focus is on studies in mice, with comparison of data in humans. The critical role of tyrosinase (c-locus or human tyrosinase protein) in normal pigmentation and albinism has been reinforced by the cloning and identification of mutations in tyrosinase and two other melanocyte-specific oxidoreductases structurally related to but functionally different from tyrosinase: the (b) brown-locus protein/gp75/catalase B and dopachrome tautomerase. Each possesses a distinct enzyme activity and yet the three share homology in strategic regions. Most of the point mutations that reduce or abrogate the respective enzyme activities are located in those regions. Tyrosinase-negative albinism is caused only by defects in tyrosinase. A locus for human tyrosinase-positive albinism has been recently mapped to chromosome 15q11.2-->q12, at a gene identified in mice as pink-eyed dilution. On the other hand, several genes encoding proteins critical for the proliferation of melanocytes are known to control the piebald phenotype. So far identified are two membrane-receptor tyrosine kinases, c-Kit and PDGF-R/alpha, and the ligand for c-kit, MGF (mast-cell growth factor, also known as stem-cell factor, c-Kit-ligand, or steel factor). Mutations in W/c-kit (white spotting), Ph/Pdgfr/a (patch), and Sl/MGF (steel), lead to a reduction in receptor kinase activity and failure of melanocytes to thrive and reach the skin during embryogenesis. Finally, mouse mutant models suggest at least two possible causes for vitiligo, a progressive loss of pigmentation that occurs after birth. In one mutant, the Blt (light) mouse, the cyclic death of hair melanocytes may be due to the toxicity of intermediates and byproducts of melanogenesis in the presence of a dysfunctional b-locus protein. In the other model, the "vitiligo mouse," in which the allele vit has been assigned to the microphthalmia (mi) locus, the loss of melanocytes may be caused by defective signal transduction, because in addition to vitiligo mivit/mivit mice have extensive piebaldism.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center