Format

Send to

Choose Destination

See 1 citation found by title matching your search:

Cereb Cortex. 2012 Jul;22(7):1487-97. doi: 10.1093/cercor/bhr220. Epub 2011 Sep 5.

5-HT1A receptor agonists enhance pyramidal cell firing in prefrontal cortex through a preferential action on GABA interneurons.

Author information

1
Department of Neurochemistry and Neuropharmacology, IIBB-CSIC (IDIBAPS), 08036 Barcelona, Spain.

Abstract

5-HT(1A) receptors (5-HT1AR) are expressed by pyramidal and γ-aminobutyric acidergic (GABAergic) neurons in medial prefrontal cortex (mPFC). Endogenous serotonin inhibits mPFC pyramidal neurons via 5-HT1AR while 5-HT1AR agonists, given systemically, paradoxically excite ventral tegmental area-projecting pyramidal neurons. This enhances mesocortical dopamine function, a process involved in the superior efficacy of atypical antipsychotic drugs on negative and cognitive symptoms of schizophrenia. Moreover, the 5-HT1AR-induced increase of pyramidal discharge may also contribute to the maintenance of activity patterns required for working memory, impaired in schizophrenia. Given the importance of these processes, we examined the neurobiological basis of pyramidal activation through 5-HT1AR using the prototypical agent 8-OH-DPAT. (±)8-OH-DPAT (7.5 μg/kg i.v.) increased discharge rate and c-fos expression in rat mPFC pyramidal neurons. Local blockade of GABA(A) inputs with gabazine (SR-95531) avoided (±)8-OH-DPAT-induced excitations of pyramidal neurons. Moreover, (±)8-OH-DPAT administration reduced the discharge rate of mPFC fast-spiking GABAergic interneurons at doses exciting pyramidal neurons. Activation of other 5-HT1AR subpopulations (raphe nuclei or hippocampus) does not appear to contribute to pyramidal excitations. Overall, the present data suggest a preferential action of (±)8-OH-DPAT on 5-HT1AR in GABAergic interneurons. This results in pyramidal disinhibition and subsequent downstream excitations of subcortical structures reciprocally connected with PFC, such as midbrain dopaminergic neurons.

PMID:
21893679
DOI:
10.1093/cercor/bhr220
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center