Format

Send to

Choose Destination
Trends Genet. 2019 Mar;35(3):175-185. doi: 10.1016/j.tig.2018.12.004. Epub 2019 Jan 23.

The Toxin-Antidote Model of Cytoplasmic Incompatibility: Genetics and Evolutionary Implications.

Author information

1
Auburn University, Department of Entomology and Plant Pathology, 301 Funchess Hall, Auburn, AL 36849, USA; Equal contribution.
2
Institut des Sciences de l'Evolution de Montpellier (ISEM), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Ecole Pratique des Hautes Etudes (EPHE), Institut de Recherche pour le Développement (IRD), Montpellier, France; Equal contribution.
3
Yale University, Department of Molecular Biophysics and Biochemistry, 266 Whitney Avenue, New Haven, CT 06511, USA.
4
Université Rennes 1, Institut de Génétique, Environnement, et Protection des Plantes (IGEPP), Campus Beaulieu, 35042 Rennes, France.
5
Sorbonne Université, Université Pierre et Marie Curie (UPMC) Université Paris 06, CNRS, Institut de Biologie Paris Seine, Evolution Paris Seine (IBPS, EPS), 7-9 Quai St-Bernard, 75005 Paris, France.
6
Institut des Sciences de l'Evolution de Montpellier (ISEM), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Ecole Pratique des Hautes Etudes (EPHE), Institut de Recherche pour le Développement (IRD), Montpellier, France.
7
Institut des Sciences de l'Evolution de Montpellier (ISEM), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Ecole Pratique des Hautes Etudes (EPHE), Institut de Recherche pour le Développement (IRD), Montpellier, France. Electronic address: mathieu.sicard@umontpellier.fr.
8
CNRS, University of Lyon, Laboratoire de Biométrie et Biologie Evolutive, 16 rue Raphael Dubois, 69622 Villeurbanne, France. Electronic address: sylvain.charlat@univ-lyon1.fr.

Abstract

Wolbachia bacteria inhabit the cells of about half of all arthropod species, an unparalleled success stemming in large part from selfish invasive strategies. Cytoplasmic incompatibility (CI), whereby the symbiont makes itself essential to embryo viability, is the most common of these and constitutes a promising weapon against vector-borne diseases. After decades of theoretical and experimental struggle, major recent advances have been made toward a molecular understanding of this phenomenon. As pieces of the puzzle come together, from yeast and Drosophila fly transgenesis to CI diversity patterns in natural mosquito populations, it becomes clearer than ever that the CI induction and rescue stem from a toxin-antidote (TA) system. Further, the tight association of the CI genes with prophages provides clues to the possible evolutionary origin of this phenomenon and the levels of selection at play.

KEYWORDS:

Wolbachia; cytoplasmic incompatibility; deubiquitylase; nuclease; selfish genetic elements; toxin–antidote systems

PMID:
30685209
DOI:
10.1016/j.tig.2018.12.004

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center