Send to

Choose Destination
Magn Reson Med. 2019 Jun;81(6):3515-3529. doi: 10.1002/mrm.27662. Epub 2019 Jan 17.

SUPER: A blockwise curve-fitting method for accelerating MR parametric mapping with fast reconstruction.

Author information

Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut.



To investigate Shift Undersampling improves Parametric mapping Efficiency and Resolution (SUPER), a novel blockwise curve-fitting method for accelerating parametric mapping with very fast reconstruction.


SUPER uses interleaved k-space undersampling, which enables a blockwise decomposition of the otherwise large-scale cost function to improve the reconstruction efficiency. SUPER can be readily combined with SENSE to achieve at least 4-fold acceleration. D-factor, a parametric-mapping counterpart of g-factor, was proposed and formulated to compare spatially heterogeneous noise amplification because of different acceleration methods. As a proof-of-concept, SUPER/SUPER-SENSE was validated using T1 mapping, by comparing them to alternative model-based methods, including MARTINI and GRAPPATINI, via simulations, phantom imaging, and in vivo brain imaging (N = 5), over criteria of normalized root-mean-squares error (NRMSE), average d-factor, and computational time per voxel (TPV). A novel SUPER-SENSE MOLLI cardiac T1 -mapping sequence with improved resolution (1.4 mm × 1.4 mm) was compared to standard MOLLI (1.9 mm × 2.5 mm) in 8 healthy subjects.


In brain imaging, 2-fold SUPER achieved lower NRMSE (0.04 ± 0.02 vs. 0.11 ± 0.02, P < 0.01), lower average d-factor (1.01 ± 0.002 vs. 1.12 ± 0.004, P < 0.001), and lower TPV (4.6 ms ± 0.2 ms vs. 79 ms ± 3 ms, P < 0.001) than 2-fold MARTINI. Similarly, 4-fold SUPER-SENSE achieved lower NRMSE (0.07 ± 0.01 vs. 0.13 ± 0.03, P = 0.02), lower average d-factor (1.15 ± 0.01 vs. 1.20 ± 0.01, P < 0.001), and lower TPV (4.0 ms ± 0.1 ms vs. 72 ms ± 3 ms, P < 0.001) than 4-fold GRAPPATINI. In cardiac T1 mapping, SUPER-SENSE MOLLI yielded similar myocardial T1 (1151 ms ± 63 ms vs. 1159 ms ± 32 ms, P = 0.6), slightly lower blood T1 (1643 ms ± 86 ms vs. 1680 ms ± 79 ms, P = 0.004), but improved spatial resolution compared with standard MOLLI in the same imaging time.


SUPER and SUPER-SENSE provide fast model-based reconstruction methods for accelerating parametric mapping and improving its clinical appeal.


SUPER; SUPER-SENSE; blockwise curve-fitting; high-resolution MOLLI; model-based reconstruction; parametric mapping acceleration

[Available on 2020-06-01]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center