Format

Send to

Choose Destination
Stud Mycol. 2018 Sep;91:37-59. doi: 10.1016/j.simyco.2018.10.002. Epub 2018 Oct 11.

Evolution of asexual and sexual reproduction in the aspergilli.

Author information

1
Department of Genetics, Faculty of Biology, University of Seville, 41012 Sevilla, Spain.
2
College of Food Science and Technology, Huazhong Agricultural University, Wuhan, PR China.
3
School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
4
School of Food Science and Biotechnology, Institute of Agricultural Science and Technology, Kyungpook National University, Daegu, Republic of Korea.
5
Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, USA.

Abstract

Aspergillus nidulans has long-been used as a model organism to gain insights into the genetic basis of asexual and sexual developmental processes both in other members of the genus Aspergillus, and filamentous fungi in general. Paradigms have been established concerning the regulatory mechanisms of conidial development. However, recent studies have shown considerable genome divergence in the fungal kingdom, questioning the general applicability of findings from Aspergillus, and certain longstanding evolutionary theories have been questioned. The phylogenetic distribution of key regulatory elements of asexual reproduction in A. nidulans was investigated in a broad taxonomic range of fungi. This revealed that some proteins were well conserved in the Pezizomycotina (e.g. AbaA, FlbA, FluG, NsdD, MedA, and some velvet proteins), suggesting similar developmental roles. However, other elements (e.g. BrlA) had a more restricted distribution solely in the Eurotiomycetes, and it appears that the genetic control of sporulation seems to be more complex in the aspergilli than in some other taxonomic groups of the Pezizomycotina. The evolution of the velvet protein family is discussed based on the history of expansion and contraction events in the early divergent fungi. Heterologous expression of the A. nidulans abaA gene in Monascus ruber failed to induce development of complete conidiophores as seen in the aspergilli, but did result in increased conidial production. The absence of many components of the asexual developmental pathway from members of the Saccharomycotina supports the hypothesis that differences in the complexity of their spore formation is due in part to the increased diversity of the sporulation machinery evident in the Pezizomycotina. Investigations were also made into the evolution of sex and sexuality in the aspergilli. MAT loci were identified from the heterothallic Aspergillus (Emericella) heterothallicus and Aspergillus (Neosartorya) fennelliae and the homothallic Aspergillus pseudoglaucus (=Eurotium repens). A consistent architecture of the MAT locus was seen in these and other heterothallic aspergilli whereas much variation was seen in the arrangement of MAT loci in homothallic aspergilli. This suggested that it is most likely that the common ancestor of the aspergilli exhibited a heterothallic breeding system. Finally, the supposed prevalence of asexuality in the aspergilli was examined. Investigations were made using A. clavatus as a representative 'asexual' species. It was possible to induce a sexual cycle in A. clavatus given the correct MAT1-1 and MAT1-2 partners and environmental conditions, with recombination confirmed utilising molecular markers. This indicated that sexual reproduction might be possible in many supposedly asexual aspergilli and beyond, providing general insights into the nature of asexuality in fungi.

KEYWORDS:

Asexuality; Aspergillus nidulans; Conidiation; Conidiophore; Development; Mating-type; Sporulation; abaA; brlA; velvet

Supplemental Content

Full text links

Icon for PubMed Central
Loading ...
Support Center