Format

Send to

Choose Destination
J Chem Theory Comput. 2018 Jun 12;14(6):3279-3288. doi: 10.1021/acs.jctc.8b00031. Epub 2018 May 8.

Enhanced Monte Carlo Methods for Modeling Proteins Including Computation of Absolute Free Energies of Binding.

Author information

1
Department of Chemistry , Yale University , New Haven , Connecticut 06520-8107 , United States.

Abstract

The generation of a complete ensemble of geometrical configurations is required to obtain reliable estimations of absolute binding free energies by alchemical free energy methods. Molecular dynamics (MD) is the most popular sampling method, but the representation of large biomolecular systems may be incomplete owing to energetic barriers that impede efficient sampling of the configurational space. Monte Carlo (MC) methods can possibly overcome this issue by adapting the attempted movement sizes to facilitate transitions between alternative local-energy minima. In this study, we present an MC statistical mechanics algorithm to explore the protein-ligand conformational space with emphasis on the motions of the protein backbone and side chains. The parameters for each MC move type were optimized to better reproduce conformational distributions of 18 dipeptides and the well-studied T4-lysozyme L99A protein. Next, the performance of the improved MC algorithms was evaluated by computing absolute free energies of binding for L99A lysozyme with benzene and seven analogs. Results for benzene with L99A lysozyme from MD and the optimized MC protocol were found to agree within 0.6 kcal/mol, while a mean unsigned error of 1.2 kcal/mol between MC results and experiment was obtained for the seven benzene analogs. Significant advantages in computation speed are also reported with MC over MD for similar extents of configurational sampling.

PMID:
29708338
PMCID:
PMC6311413
DOI:
10.1021/acs.jctc.8b00031
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for PubMed Central
Loading ...
Support Center