Format

Send to

Choose Destination
Mol Cell Biol. 2018 May 15;38(11). pii: e00548-17. doi: 10.1128/MCB.00548-17. Print 2018 Jun 1.

MicroRNA 199a-5p Attenuates Retrograde Transport and Protects against Toxin-Induced Inhibition of Protein Biosynthesis.

Author information

1
Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA jfaranda@cbm.csic.es carlos.fernandez-hernando@yale.edu.
2
Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Pathology, Yale University School of Medicine, New Haven, Connecticut, USA.
3
Centro de Biología Molecular Severo Ochoa, UAM/CSIC, Madrid, Spain.
4
Institut Curie, PSL Research University, Chemical Biology of Membranes and Therapeutic Delivery unit, INSERM, U 1143, CNRS, UMR 3666, Paris, France.

Abstract

Retrograde transport (RT) allows cells to retrieve receptors and other cellular cargoes for delivery to the Golgi apparatus, contributing to the maintenance of cellular homeostasis. This transport route is also commonly used by several bacterial toxins to exert their deleterious actions on eukaryotic cells. While the retrograde transport process has been well characterized, the contribution of microRNAs (miRNAs) in regulating this cellular transport mechanism remains unknown. Here, we determined that mir-199a and mir-199b, members of the intronic miRNA family, coordinate genes regulating RT and endosome trafficking. We demonstrate that miR-199a-5p attenuates the expression of Vps26A, Rab9B, and M6PR, thereby controlling RT from endosomes to the trans-Golgi network (TGN). Importantly, we found that overexpression of a Vps26A construct resistant to the inhibitory action of miR-199a-5p abrogates the effect of miR-199a-5p on RT. Finally, we demonstrate that miR-199-5p overexpression attenuates Shiga toxin type 1 (Stx1)-mediated inhibition of protein biosynthesis. In summary, our work identifies the first noncoding RNA that influences RT and reduces the inhibition of protein biosynthesis caused by bacterial toxins.

KEYWORDS:

bacterial toxins; dynamin; miRNAs; retrograde transport

PMID:
29555727
PMCID:
PMC5954181
DOI:
10.1128/MCB.00548-17
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center