Format

Send to

Choose Destination
See comment in PubMed Commons below
Neuroimage. 2017 Feb 20. pii: S1053-8119(17)30122-2. doi: 10.1016/j.neuroimage.2017.02.018. [Epub ahead of print]

Topographic organization of the cerebral cortex and brain cartography.

Author information

1
Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany; Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Germany. Electronic address: simon.b.eickhoff@gmail.com.
2
Interdepartmental Neuroscience Program, Yale University, USA; Department of Radiology and Biomedical Imaging, Yale University, USA; Department of Neurosurgery, Yale University, USA.
3
Department of Electrical and Computer Engineering, ASTAR-NUS Clinical Imaging Research Centre, Singapore Institute for Neurotechnology and Memory Networks Program, National University of Singapore, Singapore; Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA; Centre for Cognitive Neuroscience, Duke-NUS Graduate Medical School, Singapore.

Abstract

One of the most specific but also challenging properties of the brain is its topographic organization into distinct modules or cortical areas. In this paper, we first review the concept of topographic organization and its historical development. Next, we provide a critical discussion of the current definition of what constitutes a cortical area, why the concept has been so central to the field of neuroimaging and the challenges that arise from this view. A key aspect in this discussion is the issue of spatial scale and hierarchy in the brain. Focusing on in-vivo brain parcellation as a rapidly expanding field of research, we highlight potential limitations of the classical concept of cortical areas in the context of multi-modal parcellation and propose a revised interpretation of cortical areas building on the concept of neurobiological atoms that may be aggregated into larger units within and across modalities. We conclude by presenting an outlook on the implication of this revised concept for future mapping studies and raise some open questions in the context of brain parcellation.

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center