Send to

Choose Destination
J Biol Chem. 2017 Mar 3;292(9):3581-3590. doi: 10.1074/jbc.M116.769208. Epub 2017 Jan 17.

A Phosphoproteomic Screen Identifies a Guanine Nucleotide Exchange Factor for Rab3A Protein as a Mitogen-activated Protein (MAP) Kinase Phosphatase-5-regulated MAP Kinase Target in Interleukin 6 (IL-6) Secretion and Myogenesis.

Author information

From the Department of Pharmacology and.
the Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060.
the Department of Biology Education, College of Education, Pusan National University, Busan 609-735, Republic of Korea, and.
Program in Public Health, University of California, Irvine, California 92697.
From the Department of Pharmacology and
Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University, New Haven, Connecticut 06520.


The mitogen-activated protein kinases (MAPKs) have been shown to regulate skeletal muscle function. Previously, we showed that MAPK phosphatase-5 (MKP-5) negatively regulates myogenesis and regeneration of skeletal muscle through inhibition of p38 MAPK and c-Jun N-terminal kinase (JNK). However, the identity and contribution of MKP-5-regulated MAPK targets in the control of skeletal muscle function and regenerative myogenesis have not been established. To identify MKP-5-regulated MAPK substrates in skeletal muscle, we performed a global differential phospho-MAPK substrate screen in regenerating skeletal muscles of wild type and MKP-5-deficient mice. We discovered a novel MKP-5-regulated MAPK substrate called guanine nucleotide exchange factor for Rab3A (GRAB) that was hyperphosphorylated on a phospho-MAPK motif in skeletal muscle of MKP-5-deficient mice. GRAB was found to be phosphorylated by JNK on serine 169. Myoblasts overexpressing a phosphorylation-defective mutant of GRAB containing a mutation at Ser-169 to Ala-169 (GRAB-S169A) inhibited the ability of C2C12 myoblasts to differentiate. We found that GRAB phosphorylation at Ser-169 was required for the secretion of the promyogenic cytokine interleukin 6 (IL-6). Consistent with this observation, MKP-5-deficient mice exhibited increased circulating IL-6 expression as compared with wild type mice. Collectively, these data demonstrate a novel mechanism whereby MKP-5-mediated regulation of JNK negatively regulates phosphorylation of GRAB, which subsequently controls secretion of IL-6. These data support the notion that MKP-5 serves as a negative regulator of MAPK-dependent signaling of critical skeletal muscle signaling pathways.


cytokine; dual specificity phosphoprotein phosphatase; mitogen-activated protein kinase (MAPK); myogenesis; phosphoproteomics; skeletal muscle

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center