Format

Send to

Choose Destination
Biomed Res Int. 2016;2016:8484217. Epub 2016 Oct 12.

Cell Electrical Impedance as a Novel Approach for Studies on Senescence Not Based on Biomarkers.

Author information

1
Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), MEMS and Nano Systems Laboratory No. 317, Dasan Building, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
2
School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), MEMS and Nano Systems Laboratory No. 317, Dasan Building, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
3
School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Laboratory of Vascular Development No. 115, Life Science Building, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
4
School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Laboratory of Vascular Development No. 115, Life Science Building, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea; Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University, 300 George Street, New Haven, CT, USA.
5
Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), MEMS and Nano Systems Laboratory No. 317, Dasan Building, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea; School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), MEMS and Nano Systems Laboratory No. 317, Dasan Building, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.

Abstract

Senescence of cardiac myocytes is frequently associated with heart diseases. To analyze senescence in cardiac myocytes, a number of biomarkers have been isolated. However, due to the complex nature of senescence, multiple markers are required for a single assay to accurately depict complex physiological changes associated with senescence. In single cells, changes in both cytoplasm and cell membrane during senescence can affect the changes in electrical impedance. Based on this phenomenon, we developed MEDoS, a novel microelectrochemical impedance spectroscopy for diagnosis of senescence, which allows us to precisely measure quantitative changes in electrical properties of aging cells. Using cardiac myocytes isolated from 3-, 6-, and 18-month-old isogenic zebrafish, we examined the efficacy of MEDoS and showed that MEDoS can identify discernible changes in electrical impedance. Taken together, our data demonstrated that electrical impedance in cells at different ages is distinct with quantitative values; these results were comparable with previously reported ones. Therefore, we propose that MEDoS be used as a new biomarker-independent methodology to obtain quantitative data on the biological senescence status of individual cells.

PMID:
27812531
PMCID:
PMC5080468
DOI:
10.1155/2016/8484217
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Hindawi Limited Icon for PubMed Central
Loading ...
Support Center