Format

Send to

Choose Destination
See comment in PubMed Commons below
Stem Cell Reports. 2016 Jul 12;7(1):19-28. doi: 10.1016/j.stemcr.2016.05.004.

Tissue-Engineered Vascular Rings from Human iPSC-Derived Smooth Muscle Cells.

Author information

1
Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06510, USA; Department of Surgery (Plastic), Yale University, New Haven, CT 06520, USA.
2
Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA.
3
Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA.
4
Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06510, USA.
5
Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06510, USA; Department of Orthopedics, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410011, China.
6
Yale Stem Cell Center, Yale University, New Haven, CT 06510, USA.
7
Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06510, USA; Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT 06510, USA; Department of Pathology, Yale University, New Haven, CT 06510, USA. Electronic address: yibing.qyang@yale.edu.

Abstract

There is an urgent need for an efficient approach to obtain a large-scale and renewable source of functional human vascular smooth muscle cells (VSMCs) to establish robust, patient-specific tissue model systems for studying the pathogenesis of vascular disease, and for developing novel therapeutic interventions. Here, we have derived a large quantity of highly enriched functional VSMCs from human induced pluripotent stem cells (hiPSC-VSMCs). Furthermore, we have engineered 3D tissue rings from hiPSC-VSMCs using a facile one-step cellular self-assembly approach. The tissue rings are mechanically robust and can be used for vascular tissue engineering and disease modeling of supravalvular aortic stenosis syndrome. Our method may serve as a model system, extendable to study other vascular proliferative diseases for drug screening. Thus, this report describes an exciting platform technology with broad utility for manufacturing cell-based tissues and materials for various biomedical applications.

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center