Format

Send to

Choose Destination
Biochim Biophys Acta. 2015 Jul;1852(7):1520-30. doi: 10.1016/j.bbadis.2015.04.006. Epub 2015 Apr 15.

p-SMAD2/3 and DICER promote pre-miR-21 processing during pressure overload-associated myocardial remodeling.

Author information

1
Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Santander, Spain; Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain.
2
Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain; Servicio de Cirugía Cardiovascular, Hospital Universitario Marqués de Valdecilla, Santander, Spain.
3
Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA.
4
Programa de Enfermedades Cardiovasculares, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain.
5
Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Santander, Spain; Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain. Electronic address: hurlem@unican.es.

Abstract

Transforming growth factor-β (TGF-β) induces miR-21 expression which contributes to fibrotic events in the left ventricle (LV) under pressure overload. SMAD effectors of TGF-β signaling interact with DROSHA to promote primary miR-21 processing into precursor miR-21 (pre-miR-21). We hypothesize that p-SMAD-2 and -3 also interact with DICER1 to regulate the processing of pre-miR-21 to mature miR-21 in cardiac fibroblasts under experimental and clinical pressure overload. The subjects of the study were mice undergoing transverse aortic constriction (TAC) and patients with aortic stenosis (AS). In vitro, NIH-3T3 fibroblasts transfected with pre-miR-21 responded to TGF-β1 stimulation by overexpressing miR-21. Overexpression and silencing of SMAD2/3 resulted in higher and lower production of mature miR-21, respectively. DICER1 co-precipitated along with SMAD2/3 and both proteins were up-regulated in the LV from TAC-mice. Pre-miR-21 was isolated bound to the DICER1 maturation complex. Immunofluorescence analysis revealed co-localization of p-SMAD2/3 and DICER1 in NIH-3T3 and mouse cardiac fibroblasts. DICER1-p-SMAD2/3 protein-protein interaction was confirmed by in situ proximity ligation assay. Myocardial up-regulation of DICER1 constituted a response to pressure overload in TAC-mice. DICER mRNA levels correlated directly with those of TGF-β1, SMAD2 and SMAD3. In the LV from AS patients, DICER mRNA was up-regulated and its transcript levels correlated directly with TGF-β1, SMAD2, and SMAD3. Our results support that p-SMAD2/3 interacts with DICER1 to promote pre-miR-21 processing to mature miR-21. This new TGFβ-dependent regulatory mechanism is involved in miR-21 overexpression in cultured fibroblasts, and in the pressure overloaded LV of mice and human patients.

KEYWORDS:

DICER; Myocardial fibrosis; Pre-miR-21; Pressure overload; TGF-β; p-SMAD2/3

PMID:
25887159
DOI:
10.1016/j.bbadis.2015.04.006
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center