Format

Send to

Choose Destination
Toxicol In Vitro. 2015 Apr;29(3):564-74. doi: 10.1016/j.tiv.2014.12.015. Epub 2014 Dec 30.

Morphometric assessment of toxicant induced neuronal degeneration in full and restricted contact co-cultures of embryonic cortical rat neurons and astrocytes: using m-Dinitrobezene as a model neurotoxicant.

Author information

1
Toxicology Program, School of Public Health, University of Michigan, Ann Arbor, MI 48109, United States. Electronic address: dixangel@umich.edu.
2
Toxicology Program, School of Public Health, University of Michigan, Ann Arbor, MI 48109, United States. Electronic address: philbert@umich.edu.

Abstract

With m-Dinitrobenzene (m-DNB) as a selected model neurotoxicant, we demonstrate how to assess neurotoxicity, using morphology based measurement of neurite degeneration, in a conventional "full-contact" and a modern "restricted-contact" co-culture of rat cortical neurons and astrocytes. In the "full-contact" co-culture, neurons and astrocytes in complete physical contact are "globally" exposed to m-DNB. A newly emergent "restricted-contact" co-culture is attained with a microfluidic device that polarizes neuron somas and neurites into separate compartments, and the neurite compartment is "selectively" exposed to m-DNB. Morphometric analysis of the neuronal area revealed that m-DNB exposure produced no significant change in mean neuronal cell area in "full-contact" co-cultures, whereas a significant decrease was observed for neuron monocultures. Neurite elaboration into a neurite exclusive compartment in a compartmentalized microfluidic device, for both monocultures (no astrocytes) and "restricted" co-cultures (astrocytes touching neurites), decreased with exposure to increasing concentrations of m-DNB, but the average neurite area was higher in co-cultures. By using co-culture systems that more closely approach biological and architectural complexities, and the directionality of exposure found in the brain, this study provides a methodological foundation for unraveling the role of physical contact between astrocytes and neurons in mitigating the toxic effects of chemicals such as m-DNB.

KEYWORDS:

Co-culture; Cortical astrocytes; Cortical neurons; Microfluidic; Morphology; m-Dinitrobezene (m-DNB)

PMID:
25553915
PMCID:
PMC4418429
DOI:
10.1016/j.tiv.2014.12.015
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center