Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2014 Oct 10;289(41):28087-93. doi: 10.1074/jbc.M114.584300. Epub 2014 Aug 29.

Stu2, the budding yeast XMAP215/Dis1 homolog, promotes assembly of yeast microtubules by increasing growth rate and decreasing catastrophe frequency.

Author information

1
From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520.
2
From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520 jonathon.howard@yale.edu.

Abstract

Stu2 is the budding yeast member of the XMAP215/Dis1 family of microtubule polymerases. It is essential in cell division, allowing proper spindle orientation and metaphase chromosome alignment, as well as spindle elongation during anaphase. Despite Stu2 having a phenotype that suggests it promotes microtubule growth, like the other members of the XMAP215/Dis1 family, previous studies with purified Stu2 indicate only that it antagonizes microtubule growth. One potential explanation for these contradictory findings is that the assays were performed with mammalian brain tubulin, which may not be the right substrate to test the activity of Stu2 given that yeast and brain tubulins are quite divergent in sequence and that the vertebrate tubulins are subject to many post-translational modifications. To test this possibility, we reconstituted the activity of Stu2 with purified budding yeast tubulin. We found that Stu2 accelerated microtubule growth in yeast tubulin by severalfold, similar to the acceleration reported for XMAP215 in porcine brain tubulin. Furthermore, Stu2 accelerated polymerization in yeast tubulin to a much greater extent than in porcine brain tubulin, and the concentration of Stu2 required to reach 50% maximum activity in yeast tubulin was nearly 2 orders of magnitude lower than that in porcine brain tubulin. We conclude that Stu2 is a microtubule polymerase, like its relatives, and that its activity is considerably higher in yeast tubulin compared with mammalian brain tubulin. The biochemical properties of Stu2 reported here account for many of the phenotypes of Stu2 observed in cells.

KEYWORDS:

Biophysics; Fluorescence; Microtubule; Tubulin; Yeast

PMID:
25172511
PMCID:
PMC4192462
DOI:
10.1074/jbc.M114.584300
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center