Format

Send to

Choose Destination
Cancer Lett. 2015 Jan 28;356(2 Pt A):244-50. doi: 10.1016/j.canlet.2014.04.014. Epub 2014 Apr 24.

O-GlcNAc signaling in cancer metabolism and epigenetics.

Author information

1
Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, USA; Section of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, USA.
2
Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, USA; Section of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, USA; Department of Cellular & Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, USA.
3
Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, USA; Section of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, USA; School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
4
Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, USA; Section of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, USA; Department of Cellular & Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, USA. Electronic address: xiaoyong.yang@yale.edu.

Abstract

The covalent attachment of β-D-N-acetylglucosamine monosaccharides (O-GlcNAc) to serine/threonine residues of nuclear and cytoplasmic proteins is a major regulatory mechanism in cell physiology. Aberrant O-GlcNAc modification of signaling proteins, metabolic enzymes, and transcriptional and epigenetic regulators has been implicated in cancer. Relentless growth of cancer cells requires metabolic reprogramming that is intertwined with changes in the epigenetic landscape. This review highlights the emerging role of protein O-GlcNAcylation at the interface of cancer metabolism and epigenetics.

KEYWORDS:

Cancer metabolism; Epigenetics; O-GlcNAc; Posttranslational modifications

PMID:
24769077
PMCID:
PMC4208982
DOI:
10.1016/j.canlet.2014.04.014
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center