Format

Send to

Choose Destination
Arterioscler Thromb Vasc Biol. 2014 Mar;34(3):603-15. doi: 10.1161/ATVBAHA.113.303053. Epub 2014 Jan 9.

AIP1 mediates vascular endothelial cell growth factor receptor-3-dependent angiogenic and lymphangiogenic responses.

Author information

1
From the Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT (H.J.Z., X.C., Q.H., H.Z., Y.W., Y.J., W.M.); State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China (H.J.Z., X.C., X.L., L.L.); Diseases of the Aorta Lab, Center for the Endothelium, Vascular Biology Program, Centenary Institute and University of Sydney, Sydney, Australia (R.L.); Department of Ophthalmology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, China (Z.X.).

Abstract

OBJECTIVE:

To investigate the novel function of ASK1-interacting protein-1 (AIP1) in vascular endothelial cell growth factor receptor (VEGFR)-3 signaling, and VEGFR-3-dependent angiogenesis and lymphangiogenesis.

APPROACH AND RESULTS:

AIP1, a signaling scaffold protein, is highly expressed in the vascular endothelium. We have previously reported that AIP1 functions as an endogenous inhibitor in pathological angiogenesis by blocking VEGFR-2 activity. Surprisingly, here we observe that mice with a global deletion of AIP1-knockout mice (AIP1-KO) exhibit reduced retinal angiogenesis with less sprouting and fewer branches. Vascular endothelial cell (but not neuronal)-specific deletion of AIP1 causes similar defects in retinal angiogenesis. The reduced retinal angiogenesis correlates with reduced expression in VEGFR-3 despite increased VEGFR-2 levels in AIP1-KO retinas. Consistent with the reduced expression of VEGFR-3, AIP1-KO show delayed developmental lymphangiogenesis in neonatal skin and mesentery, and mount weaker VEGF-C-induced cornea lymphangiogenesis. In vitro, human lymphatic endothelial cells with AIP1 small interfering RNA knockdown, retinal endothelial cells, and lymphatic endothelial cells isolated from AIP1-KO all show attenuated VEGF-C-induced VEGFR-3 signaling. Mechanistically, we demonstrate that AIP1 via vegfr-3-specific miR-1236 increases VEGFR-3 protein expression and that, by directly binding to VEGFR-3, it enhances VEGFR-3 endocytosis and stability.

CONCLUSION:

Our in vivo and in vitro results provide the first insight into the mechanism by which AIP1 mediates VEGFR-3-dependent angiogenic and lymphangiogenic signaling.

KEYWORDS:

DAB2IP protein, human; lymphangiogenesis; vascular endothelial growth factor A; vascular endothelial growth factor receptor-2; vascular endothelial growth factor receptor-3

PMID:
24407031
PMCID:
PMC3952062
DOI:
10.1161/ATVBAHA.113.303053
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

Supplemental Content

Full text links

Icon for Atypon Icon for PubMed Central
Loading ...
Support Center