Send to

Choose Destination
See comment in PubMed Commons below
J Cell Biochem. 2013 Nov;114(11):2446-53. doi: 10.1002/jcb.24597.

Investigation of Rett syndrome using pluripotent stem cells.

Author information

Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, 10 Amistad 201B, New Haven, Connecticut, 06520; Department of Biology and Biotechnology, Hashemite University, Zarqa, P.O. Box 150459 13133, Jordan.


Rett syndrome (RTT) is one of most prevalent female neurodevelopmental disorders. De novo mutations in X-linked MECP2 are mostly responsible for RTT. Since the identification of MeCP2 as the underlying cause of RTT, murine models have contributed to understanding the pathophysiology of RTT and function of MeCP2. Reprogramming is a procedure to produce induced pluripotent stem cells (iPSCs) by overexpression of four transcription factors. iPSCs obtain similar features as embryonic stem cells and are capable of self-renewing and differentiating into cells of all three layers. iPSCs have been utilized in modeling human diseases in vitro. Neurons differentiated from RTT-iPSCs showed the recapitulation of RTT phenotypes. Despite the early success, genetic and epigenetic instability upon reprogramming and ensuing maintenance of iPSCs raise concerns in using RTT-iPSCs as an accurate in vitro model. Here, we update the current iPSC-based RTT modeling, and its concerns and challenges.


MeCP2; Reprogramming; Rett syndrome

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center