Send to

Choose Destination
Front Neurol. 2013 May 22;4:39. doi: 10.3389/fneur.2013.00039. eCollection 2013.

Potential use and challenges of functional connectivity mapping in intractable epilepsy.

Author information

Department of Diagnostic Radiology, Yale School of Medicine New Haven, CT, USA ; Department of Neurosurgery, Yale School of Medicine New Haven, CT, USA ; Department of Biomedical Engineering, Yale University New Haven, CT, USA ; Interdepartmental Neuroscience Program, Yale University New Haven, CT, USA.


This review focuses on the use of resting-state functional magnetic resonance imaging data to assess functional connectivity in the human brain and its application in intractable epilepsy. This approach has the potential to predict outcomes for a given surgical procedure based on the pre-surgical functional organization of the brain. Functional connectivity can also identify cortical regions that are organized differently in epilepsy patients either as a direct function of the disease or through indirect compensatory responses. Functional connectivity mapping may help identify epileptogenic tissue, whether this is a single focal location or a network of seizure-generating tissues. This review covers the basics of connectivity analysis and discusses particular issues associated with analyzing such data. These issues include how to define nodes, as well as differences between connectivity analyses of individual nodes, groups of nodes, and whole-brain assessment at the voxel level. The need for arbitrary thresholds in some connectivity analyses is discussed and a solution to this problem is reviewed. Overall, functional connectivity analysis is becoming an important tool for assessing functional brain organization in epilepsy.


connectome; epilepsy; fMRI; functional connectivity; graph theory; network theory; surgical planning

Supplemental Content

Full text links

Icon for Frontiers Media SA Icon for PubMed Central
Loading ...
Support Center