Format

Send to

Choose Destination
See comment in PubMed Commons below
BMC Bioinformatics. 2013 Mar 27;14:110. doi: 10.1186/1471-2105-14-110.

Differential expression analysis for paired RNA-Seq data.

Author information

1
Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA. lisa.chung@yale.edu

Abstract

BACKGROUND:

RNA-Seq technology measures the transcript abundance by generating sequence reads and counting their frequencies across different biological conditions. To identify differentially expressed genes between two conditions, it is important to consider the experimental design as well as the distributional property of the data. In many RNA-Seq studies, the expression data are obtained as multiple pairs, e.g., pre- vs. post-treatment samples from the same individual. We seek to incorporate paired structure into analysis.

RESULTS:

We present a Bayesian hierarchical mixture model for RNA-Seq data to separately account for the variability within and between individuals from a paired data structure. The method assumes a Poisson distribution for the data mixed with a gamma distribution to account variability between pairs. The effect of differential expression is modeled by two-component mixture model. The performance of this approach is examined by simulated and real data.

CONCLUSIONS:

In this setting, our proposed model provides higher sensitivity than existing methods to detect differential expression. Application to real RNA-Seq data demonstrates the usefulness of this method for detecting expression alteration for genes with low average expression levels or shorter transcript length.

PMID:
23530607
PMCID:
PMC3663822
DOI:
10.1186/1471-2105-14-110
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Support Center