Send to

Choose Destination
Anal Chem. 2013 Feb 19;85(4):2548-56. doi: 10.1021/ac400082e. Epub 2013 Feb 1.

High-throughput secretomic analysis of single cells to assess functional cellular heterogeneity.

Author information

Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06520, United States.


Secreted proteins dictate a range of cellular functions in human health and disease. Because of the high degree of cellular heterogeneity and, more importantly, polyfunctionality of individual cells, there is an unmet need to simultaneously measure an array of proteins from single cells and to rapidly assay a large number of single cells (more than 1000) in parallel. We describe a simple bioanalytical assay platform consisting of a large array of subnanoliter microchambers integrated with high-density antibody barcode microarrays for highly multiplexed protein detection from over a thousand single cells in parallel. This platform has been tested for both cell lines and complex biological samples such as primary cells from patients. We observed distinct heterogeneity among the single cell secretomic signatures that, for the first time, can be directly correlated to the cells' physical behavior such as migration. Compared to the state-of-the-art protein secretion assay such as ELISpot and emerging microtechnology-enabled assays, our approach offers both high throughput and high multiplicity. It also has a number of clinician-friendly features such as ease of operation, low sample consumption, and standardized data analysis, representing a potentially transformative tool for informative monitoring of cellular function and immunity in patients.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for American Chemical Society Icon for PubMed Central
Loading ...
Support Center