Format

Send to

Choose Destination
See comment in PubMed Commons below
Curr Opin Cell Biol. 2013 Feb;25(1):14-22. doi: 10.1016/j.ceb.2012.09.006. Epub 2012 Oct 22.

Microtubule catastrophe and rescue.

Author information

1
Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA. klei0091@umn.edu

Abstract

Microtubules are long cylindrical polymers composed of tubulin subunits. In cells, microtubules play an essential role in architecture and motility. For example, microtubules give shape to cells, serve as intracellular transport tracks, and act as key elements in important cellular structures such as axonemes and mitotic spindles. To accomplish these varied functions, networks of microtubules in cells are very dynamic, continuously remodeling through stochastic length fluctuations at the ends of individual microtubules. The dynamic behavior at the end of an individual microtubule is termed 'dynamic instability'. This behavior manifests itself by periods of persistent microtubule growth interrupted by occasional switching to rapid shrinkage (called microtubule 'catastrophe'), and then by switching back from shrinkage to growth (called microtubule 'rescue'). In this review, we summarize recent findings which provide new insights into the mechanisms of microtubule catastrophe and rescue, and discuss the impact of these findings in regards to the role of microtubule dynamics inside of cells.

PMID:
23092753
PMCID:
PMC3556214
DOI:
10.1016/j.ceb.2012.09.006
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center