Send to

Choose Destination
J Biol Chem. 2012 May 11;287(20):16917-29. doi: 10.1074/jbc.M111.329979. Epub 2012 Mar 28.

Transforming growth factor-β1 regulates Cdk5 activity in primary sensory neurons.

Author information

Functional Genomics Section, Laboratory of Cell and Developmental Biology, NIDCR, National Institutes of Health, Bethesda, Maryland 20892, USA.


In addition to many important roles for Cdk5 in brain development and synaptic function, we reported previously that Cdk5 regulates inflammatory pain signaling, partly through phosphorylation of transient receptor potential vanilloid 1 (TRPV1), an important Na(+)/Ca(2+) channel expressed in primary nociceptive afferent nerves. Because TGF-β regulates inflammatory processes and its receptor is expressed in TRPV1-positive afferents, we studied the cross-talk between these two pathways in sensory neurons during experimental peripheral inflammation. We demonstrate that TGF-β1 increases transcription and protein levels of the Cdk5 co-activator p35 through ERK1/2, resulting in an increase in Cdk5 activity in rat B104 neuroblastoma cells. Additionally, TGF-β1 enhances the capsaicin-induced Ca(2+) influx in cultured primary neurons from dorsal root ganglia (DRG). Importantly, Cdk5 activity was reduced in the trigeminal ganglia and DRG of 14-day-old TGF-β1 knock-out mice, resulting in reduced Cdk5-dependent phosphorylation of TRPV1. The decreased Cdk5 activity is associated with attenuated thermal hyperalgesia in TGF-β1 receptor conditional knock-out mice, where TGF-β signaling is significantly reduced in trigeminal ganglia and DRG. Collectively, our results indicate that active cross-talk between the TGF-β and Cdk5 pathways contributes to inflammatory pain signaling.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center