Send to

Choose Destination
Brain Connect. 2011;1(3):185-93. doi: 10.1089/brain.2011.0032.

Role of ongoing, intrinsic activity of neuronal populations for quantitative neuroimaging of functional magnetic resonance imaging-based networks.

Author information

Magnetic Resonance Research Center (MRRC), Yale University, New Haven, Connecticut, USA.


A primary objective in neuroscience is to determine how neuronal populations process information within networks. In humans and animal models, functional magnetic resonance imaging (fMRI) is gaining increasing popularity for network mapping. Although neuroimaging with fMRI-conducted with or without tasks-is actively discovering new brain networks, current fMRI data analysis schemes disregard the importance of the total neuronal activity in a region. In task fMRI experiments, the baseline is differenced away to disclose areas of small evoked changes in the blood oxygenation level-dependent (BOLD) signal. In resting-state fMRI experiments, the spotlight is on regions revealed by correlations of tiny fluctuations in the baseline (or spontaneous) BOLD signal. Interpretation of fMRI-based networks is obscured further, because the BOLD signal indirectly reflects neuronal activity, and difference/correlation maps are thresholded. Since the small changes of BOLD signal typically observed in cognitive fMRI experiments represent a minimal fraction of the total energy/activity in a given area, the relevance of fMRI-based networks is uncertain, because the majority of neuronal energy/activity is ignored. Thus, another alternative for quantitative neuroimaging of fMRI-based networks is a perspective in which the activity of a neuronal population is accounted for by the demanded oxidative energy (CMR(O2)). In this article, we argue that network mapping can be improved by including neuronal energy/activity of both the information about baseline and small differences/fluctuations of BOLD signal. Thus, total energy/activity information can be obtained through use of calibrated fMRI to quantify differences of ΔCMR(O2) and through resting-state positron emission tomography/magnetic resonance spectroscopy measurements for average CMR(O2).

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Atypon Icon for PubMed Central
Loading ...
Support Center