Send to

Choose Destination
J Neurosci. 2012 Feb 22;32(8):2824-34. doi: 10.1523/JNEUROSCI.3942-11.2012.

Integrin β1 signals through Arg to regulate postnatal dendritic arborization, synapse density, and behavior.

Author information

Department of Molecular Biophysics and Biochemistry,Yale University, New Haven, CT 06510, USA.


Integrins are heterodimeric extracellular matrix receptors that are essential for the proper development of the vertebrate nervous system. We report here that selective loss of integrin β1 in excitatory neurons leads to reductions in the size and complexity of hippocampal dendritic arbors, hippocampal synapse loss, impaired hippocampus-dependent learning, and exaggerated psychomotor sensitivity to cocaine in mice. Our biochemical and genetic experiments demonstrate that the intracellular tail of integrin β1 binds directly to Arg kinase and that this interaction stimulates activity of the Arg substrate p190RhoGAP, an inactivator of the RhoA GTPase. Moreover, genetic manipulations that reduce integrin β1 signaling through Arg recapitulate the integrin β1 knock-out phenotype in a gene dose-sensitive manner. Together, these results describe a novel integrin β1-Arg-p190RhoGAP pathway that regulates dendritic arbor size, promotes synapse maintenance, supports proper hippocampal function, and mitigates the behavioral consequences of cocaine exposure.

[Indexed for MEDLINE]
Free PMC Article

Publication type, MeSH terms, Substances, Grant support

Publication type

MeSH terms


Grant support

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center