Send to

Choose Destination
Mol Biol Cell. 2011 Dec;22(24):4765-75. doi: 10.1091/mbc.E11-08-0695. Epub 2011 Oct 26.

Compromised mutant EFEMP1 secretion associated with macular dystrophy remedied by proteostasis network alteration.

Author information

Departments of Chemistry and Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037, USA.


An Arg345Trp (R345W) mutation in epidermal growth factor-containing, fibulin-like extracellular matrix protein 1 (EFEMP1) causes its inefficient secretion and the macular dystrophy malattia leventinese/Doyne honeycomb retinal dystrophy (ML/DHRD). To understand the influence of the protein homeostasis (or proteostasis) network in rescuing mutant EFEMP1 misfolding and inefficient secretion linked to ML/DHRD, we developed a convenient and sensitive cell-based luminescence assay to monitor secretion versus intracellular accumulation. Fusing EFEMP1 to Gaussia luciferase faithfully recapitulates mutant EFEMP1 secretion defects observed previously using more cumbersome methodology. To understand what governs mutant intracellular retention, we generated a series of R345 mutants. These mutants revealed that aromatic residue substitutions (i.e., Trp, Tyr, and Phe) at position 345 cause significant EFEMP1 secretion deficiencies. These secretion defects appear to be caused, in part, by reduced native disulfide bonding in domain 6 harboring the 345 position. Finally, we demonstrate that mutant EFEMP1 secretion and proper disulfide formation are enhanced by adaptation of the cellular environment by a reduced growth temperature and/or translational attenuation. This study highlights the mechanisms underlying the inefficient secretion of R345W EFEMP1 and demonstrates that alteration of the proteostasis network may provide a strategy to alleviate or delay the onset of this macular dystrophy.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Atypon Icon for PubMed Central
Loading ...
Support Center