Send to

Choose Destination
Mol Pharm. 2011 Dec 5;8(6):2252-61. doi: 10.1021/mp200346y. Epub 2011 Oct 5.

A compound that inhibits the HOP-Hsp90 complex formation and has unique killing effects in breast cancer cell lines.

Author information

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States.


The chaperone Hsp90 is required for the correct folding and maturation of certain "client proteins" within all cells. Hsp90-mediated folding is particularly important in cancer cells, because upregulated or mutant oncogenic proteins are often Hsp90 clients. Hsp90 inhibitors thus represent a route to anticancer agents that have the potential to be active against several different types of cancer. Currently, various Hsp90 inhibitors that bind to Hsp90 at its ATP-binding site are in preclinical and clinical trials. Some of the most promising Hsp90 ATP-binding site inhibitors are the well characterized geldanamycin derivative 17-AAG and the recently described compounds PU-H71 and NVP-AUY922. An undesirable characteristic of these compounds is the transcriptional upregulation of Hsp70 that has prosurvival effects. Here we characterize the activity of a new type of chaperone inhibitor, 1,6-dimethyl-3-propylpyrimido[5,4-e][1,2,4]triazine-5,7-dione (named C9 for simplicity). Using purified protein components in vitro, C9 prevents Hsp90 from interacting with the cochaperone HOP and is thus expected to impair the Hsp90-dependent folding pathway in vivo. We show that this compound is effective in killing various breast cancer cell lines including the highly metastatic MDA-MB-231. An important property of this compound is that it does not induce the transcriptional upregulation of Hsp70. Moreover, when cells are treated with a combination of C9 and either 17-AAG or NVP-AUY922, the overexpression of Hsp70 is counteracted considerably and C9's lethal-IC50 decreases compared to its value when added alone.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center