Format

Send to

Choose Destination
Neuron. 2010 Oct 6;68(1):32-44. doi: 10.1016/j.neuron.2010.09.005.

Presynaptic activity and CaMKII modulate retrograde semaphorin signaling and synaptic refinement.

Author information

1
Pharmacology Department, Yale School of Medicine, New Haven, CT 06520, USA.

Abstract

Establishing synaptic connections often involves the activity-dependent withdrawal of off-target contacts. We describe an in vivo role for temporally patterned electrical activity, voltage-gated calcium channels, and CaMKII in modulating the response of Drosophila motoneurons to the chemorepellent Sema-2a during synaptic refinement. Mutations affecting the Sema-2a ligand, the plexin B receptor (plexB), the voltage-gated Ca(v)2.1 calcium channel (cac), or the voltage-gated Na(v)1 sodium channel (mle(nap-ts);tipE) each result in ectopic neuromuscular contacts. Sema-2a interacts genetically with both of the channel mutations. The cac phenotype is enhanced by the Sema-2a mutation and is suppressed by either plexB overexpression or patterned, low-frequency (0.01 Hz) bouts of electrical activity in the embryo. The calcium-dependent suppression of ectopic contacts also depends on the downstream activation of CaMKII. These results indicate a role for patterned electrical activity and presynaptic calcium signaling, acting through CaMKII, in modulating a retrograde signal during the refinement of synaptic connections.

PMID:
20920789
PMCID:
PMC2950831
DOI:
10.1016/j.neuron.2010.09.005
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center