Send to

Choose Destination
See comment in PubMed Commons below
Nicotine Tob Res. 2010 May;12(5):535-9. doi: 10.1093/ntr/ntq040. Epub 2010 Apr 6.

Beta2* nicotinic acetylcholine receptors modulate pain sensitivity in acutely abstinent tobacco smokers.

Author information

Yale University School of Medicine and the VA Connecticut Healthcare System, Department of Psychiatry, 116A6, 950 Campbell Avenue, West Haven, CT 06516, USA.



Nicotine and tobacco smoking administration have demonstrated antinociceptive effects that are mediated by the nicotinic acetylcholine receptor containing the beta2* subunit (beta(2)*-nAChR). In this study, we examined the relationship between beta(2)*-nAChR availability and nociception during acute withdrawal in human tobacco smokers using [(123)I]5-IA-85380 ([(123)I]5-IA) and single photon emission computed tomography (SPECT) brain imaging.


Tobacco smokers (n = 24, aged 34 +/- 11 years) participated in the cold pressor task during acute withdrawal (up to 3 hr) and a second cold pressor task following 7-13 days of smoking abstinence on the day they were imaged with [(123)I]5-IA SPECT. The cold pressor task is used to measure pain sensitivity (when subjects first feel pain) and pain tolerance (when subjects cannot withstand pain).


Following 7-13 days of tobacco smoking abstinence, increased pain sensitivity, for example, shorter time to first feel pain, was significantly associated with higher beta(2)*-nAChR availability in the thalamus (r = -.43), parietal (r = -.50), frontal (r = -.55), anterior cingulate (r = -.44), temporal (r = -.43), and occipital (r = -.48) cortices. The percent change in pain sensitivity from the first to second cold pressor task was significantly correlated with beta(2)*-nAChR availability in the thalamus (r = -.57), cerebellum (r = -.50), striatum (r = -.057), parietal (r = -.46), anterior cingulate (r = -.48), temporal (r = -.55), and occipital (r = -.57) cortices. Similar associations were not observed with pain tolerance.


This suggests that beta(2)*-nAChRs play a role in pain sensitivity but not pain tolerance during tobacco smoking withdrawal. If individuals are more likely to relapse in response to painful stimuli, lower beta(2)*-nAChR availability during acute abstinence may be protective.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems Icon for PubMed Central
    Loading ...
    Support Center