Format

Send to

Choose Destination
See comment in PubMed Commons below
Ecol Lett. 2009 Dec;12(12):1298-305. doi: 10.1111/j.1461-0248.2009.01378.x. Epub 2009 Sep 8.

Elasticity analysis in epidemiology: an application to tick-borne infections.

Author information

1
Theoretical Epidemiology, Yalelaan 7, University of Utrecht, Utrecht, The Netherlands.

Abstract

The application of projection matrices in population biology to plant and animal populations has a parallel in infectious disease ecology when next-generation matrices (NGMs) are used to characterize growth in numbers of infected hosts (R(0)). The NGM is appropriate for multi-host pathogens, where each matrix element represents the number of cases of one type of host arising from a single infected individual of another type. For projection matrices, calculations of the sensitivity and elasticity of the population growth rate to changes in the matrix elements has generated insight into plant and animal populations. These same perturbation analyses can be used for infectious disease systems. To illustrate this in detail we parameterized an NGM for seven tick-borne zoonoses and compared them in terms of the contributions to R(0) from three different routes of transmission between ticks, and between ticks and vertebrate hosts. The definition of host type may be the species of the host or the route of infection, or, as was the case for the set of tick-borne pathogens, a combination of species and the life stage at infection. This freedom means that there is a broad range of disease systems and questions for which the methodology is appropriate.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center