Send to

Choose Destination
See comment in PubMed Commons below
Blood. 2009 Apr 30;113(18):4240-9. doi: 10.1182/blood-2008-10-183251. Epub 2009 Jan 26.

IL-17-producing human peripheral regulatory T cells retain suppressive function.

Author information

Division of Molecular Immunology, Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.


Although implicated in antagonistic functions, both regulatory T cells (Tregs) and Th17 effector cells play an important role in controlling autoimmune pathogenesis. Paradoxically, recent studies indicate that Tregs have the capacity to produce interleukin-17 (IL-17), although the ability of these cells to retain their suppressive function remains unknown. Here we report that human Tregs within the CD4(+)CD45RA(-)CD25(high)CCR6(+)HLA-DR(-)FoxP3(+) population produce IL-17 when activated in the presence of the proinflammatory cytokines IL-1beta and IL-6, whereas IL-17 secretion was inhibited by TGFbeta. To assess the ability of a single Treg to secrete IL-17 and to suppress in vitro immune function, we isolated clones from this population. We found that IL-17(+)/FoxP3(+) Treg clones retain suppressive function and exhibit the plasticity to secrete IL-17 or suppress depending on the nature of the stimulus provided. IL-17 production by these Treg clones was accompanied by sustained FoxP3 expression and concomitant, but reversible, loss of suppressive activity. Our data demonstrate that at the single cell level a subset of in vitro suppressive FoxP3(+) cells can be driven to secrete IL-17 under inflammatory conditions. These findings suggest a new mechanism by which inflammation can drive Tregs to secrete IL-17, thereby dampening suppression and promoting an inflammatory milieu.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center