Format

Send to

Choose Destination
See comment in PubMed Commons below
Tissue Eng Part A. 2009 Feb;15(2):319-30. doi: 10.1089/ten.tea.2008.0161.

Influence of culture medium on smooth muscle cell differentiation from human bone marrow-derived mesenchymal stem cells.

Author information

1
Department of Anesthesiology & Biomedical Engineering, Vascular Biology & Transplantation (VBT) Program, Yale University School of Medicine, New Haven, Connecticut 06520-8089, USA.

Abstract

Human bone marrow-derived mesenchymal stem cells (hMSCs) represent an appealing source of smooth muscle cells (SMCs) for engineering small-diameter vascular grafts due to the limited availability and replicative capacity of somatic SMCs. However, lack of standardization of hMSC culture conditions has limited some progress in hMSC research. Because, at the moment, a chemically defined, serum-free medium without growth factors is not capable of amplifying hMSCs in vitro, the usage of serum (either human serum or fetal bovine serum [FBS]) continues in hMSC research. The emergence of commercial hMSCs and hMSC media opened a series of questions regarding the compatibility of commercial and homemade hMSCs and hMSC media. In this study, two types of commonly used FBS-containing hMSC media-MSCGM (containing 10% FBS) and MesenPro (containing 2% FBS), along with our homemade medium (low-glucose Dulbecco's modified Eagle's medium plus 10% selected lot FBS)-were compared in their ability to support SMC differentiation from hMSCs. The effects of FBS level, medium supplements (ascorbic acid, copper, etc.), and growth factors (transforming growth factor beta1) were also examined for their impact on SMC differentiation. It was discovered that MesenPro and transforming growth factor beta1 are the strongest SMC inducers from hMSCs. In contrast, hMSCs grown in homemade (10% Dulbecco's modified Eagle's medium) and commercial MSCGM media remained undifferentiated. FBS concentration did not affect SMC differentiation when 10% FBS was compared with 2%. Finally, the mechanism underlying SMC differentiation from hMSCs grown in FBS-containing medium was explored by following the expression changes of serum response factor during the establishment of hMSC culture.

PMID:
19115826
PMCID:
PMC2716410
DOI:
10.1089/ten.tea.2008.0161
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon Icon for PubMed Central
    Loading ...
    Support Center