Send to

Choose Destination
See comment in PubMed Commons below
Cell Metab. 2008 Dec;8(6):522-31. doi: 10.1016/j.cmet.2008.09.004.

Insig regulates HMG-CoA reductase by controlling enzyme phosphorylation in fission yeast.

Author information

  • 1Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.


Insig functions as a central regulator of cellular cholesterol homeostasis by controlling activity of HMG-CoA reductase (HMGR) in cholesterol synthesis. Insig both accelerates the degradation of HMGR and suppresses HMGR transcription through the SREBP-Scap pathway. The fission yeast Schizosaccharomyces pombe encodes homologs of Insig, HMGR, SREBP, and Scap, called ins1(+), hmg1(+), sre1(+), and scp1(+). Here, we characterize fission yeast Insig and demonstrate that Ins1 is dedicated to regulation of Hmg1, but not the Sre1-Scp1 pathway. Using a sterol-sensing domain mutant of Hmg1, we demonstrate that Ins1 binding to Hmg1 inhibits enzyme activity by promoting phosphorylation of the Hmg1 active site, which increases the K(M) for NADPH. Ins1-dependent phosphorylation of Hmg1 requires the MAP kinase Sty1/Spc1, and Hmg1 phosphorylation is physiologically regulated by nutrient stress. Thus, in fission yeast, Insig regulates sterol synthesis by a different mechanism than in mammalian cells, controlling HMGR phosphorylation in response to nutrient supply.

[PubMed - indexed for MEDLINE]
Free PMC Article

Publication Types, MeSH Terms, Substances, Grant Support

Publication Types

MeSH Terms


Grant Support

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center