Format

Send to

Choose Destination
J Proteome Res. 2008 Mar;7(3):979-89. doi: 10.1021/pr070496k. Epub 2008 Jan 19.

Analysis of TRPC3-interacting proteins by tandem mass spectrometry.

Author information

1
Secretory Physiology Section, Molecular Physiology and Therapeutics Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892, USA.

Abstract

Mammalian transient receptor potential canonical (TRPC) channels are a family of nonspecific cation channels that are activated in response to stimulation of phospholipase C (PLC)-dependent hydrolysis of the membrane lipid phosphatidylinositol 4,5-bisphosphate. Despite extensive studies, the mechanism(s) involved in regulation of mammalian TRPC channels remains unknown. Presence of various protein-interacting domains in TRPC channels have led to the suggestion that they associate with proteins that are involved in their function and regulation. This study was directed toward identifying the proteins associated with native TRPC3 using a shotgun proteomic approach. Anti-TRPC3 antibody was used to immunoprecipitate TRPC3 from solubilized rat brain crude membranes under conditions that allow retention of TRPC3 function. Proteins in the TRPC3 (using anti-TRPC3 antibody) and control (using rabbit IgG) immunoprecipitates were separated by SDS-PAGE, the gel was sectioned, and the resolved proteins were digested by trypsin in situ. After extraction of the peptides, the peptides were separated by HPLC and sequences derived by MS/MS. Analysis of the data revealed 64 specific TRPC3-associated proteins which can be grouped in terms of their cellular location and involvement in specific cellular function. Many of the proteins identified have been previously reported as TRPC3-regulatory proteins, such as IP3Rs and vesicle trafficking proteins. In addition, we report novel putative TRPC3-interacting proteins, including those involved in protein endocytosis and neuronal growth. To our knowledge, this is the first comprehensive proteomic analysis of a native TRPC channel. These data reveal potential TRPC3 regulatory proteins and provide novel insights of the mechanism(s) regulating TRPC3 channels as well as the possible cellular functions where the channel might be involved.

PMID:
18205297
DOI:
10.1021/pr070496k
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center