Format

Send to

Choose Destination
Cell Metab. 2007 Dec;6(6):446-57.

Loss of Akt1 leads to severe atherosclerosis and occlusive coronary artery disease.

Author information

1
Department of Pharmacology and Vascular Biology and Therapeutics, Amistad Building, 10 Amistad St., Yale University School of Medicine, New Haven, CT 06511, USA.

Abstract

The Akt signaling pathway controls several cellular functions in the cardiovascular system; however, its role in atherogenesis is unknown. Here, we show that the genetic ablation of Akt1 on an apolipoprotein E knockout background (ApoE(-/-)Akt1(-/-)) increases aortic lesion expansion and promotes coronary atherosclerosis. Mechanistically, lesion formation is due to the enhanced expression of proinflammatory genes and endothelial cell and macrophage apoptosis. Bone marrow transfer experiments showing that macrophages from ApoE(-/-)Akt1(-/-) donors were not sufficient to worsen atherogenesis when transferred to ApoE(-/-) recipients suggest that lesion expansion in the ApoE(-/-)Akt1(-/-) strain might be of vascular origin. In the vessel wall, the loss of Akt1 increases inflammatory mediators and reduces eNOS phosphorylation, suggesting that Akt1 exerts vascular protection against atherogenesis. The presence of coronary lesions in ApoE(-/-)Akt1(-/-) mice provides a new model for studying the mechanisms of acute coronary syndrome in humans.

PMID:
18054314
PMCID:
PMC3621848
DOI:
10.1016/j.cmet.2007.10.007
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center