Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2007 Jul 20;282(29):20794-8. Epub 2007 May 24.

Activation of 5'-AMP-activated kinase with diabetes drug metformin induces casein kinase Iepsilon (CKIepsilon)-dependent degradation of clock protein mPer2.

Author information

1
Laboratory of Biochemical Genetics, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA.

Abstract

Metformin is one of the most commonly used first line drugs for type II diabetes. Metformin lowers serum glucose levels by activating 5'-AMP-activated kinase (AMPK), which maintains energy homeostasis by directly sensing the AMP/ATP ratio. AMPK plays a central role in food intake and energy metabolism through its activities in central nervous system and peripheral tissues. Since food intake and energy metabolism is synchronized to the light-dark (LD) cycle of the environment, we investigated the possibility that AMPK may affect circadian rhythm. We discovered that the circadian period of Rat-1 fibroblasts treated with metformin was shortened by 1 h. One of the regulators of the period length is casein kinase Iepsilon (CKIepsilon), which by phosphorylating and inducing the degradation of the circadian clock component, mPer2, shortens the period length. AMPK phosphorylates Ser-389 of CKIepsilon, resulting in increased CKIepsilon activity and degradation of mPer2. In peripheral tissues, injection of metformin leads to mPer2 degradation and a phase advance in the circadian expression pattern of clock genes in wild-type mice but not in AMPK alpha2 knock-out mice. We conclude that metformin and AMPK have a previously unrecognized role in regulating the circadian rhythm.

PMID:
17525164
DOI:
10.1074/jbc.C700070200
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center