Send to

Choose Destination
NMR Biomed. 2007 May;20(3):375-82.

Neurodevelopment of C57B/L6 mouse brain assessed by in vivo diffusion tensor imaging.

Author information

Department of Diagnostic Radiology, Yale University, 300 Cedar Street, New Haven, CT 06510, USA.


Heterogeneous spatiotemporal patterns of C57B/L6 murine brain maturation during the first 7 weeks after birth (i.e. P15 to P45) were assessed in vivo by diffusion tensor imaging (DTI) at 9.4 T. Maps of apparent diffusion coefficient (ADC) and fractional anisotropy (FA) were used to assess developmental changes. Because directionally encoded color (DEC) maps provide an efficient and straightforward way to visualize anisotropy direction, they were used to highlight the orientation-dominant anisotropic tissues. In the corpus callosum, the increases in FA (approximately 0.4 to approximately 0.6 from P15 to P45) were primarily dominant in the medial-lateral direction, whereas the ADC decreased slightly (approximately 0.8 x 10(-3) to approximately 0.5 x 10(-3) mm(2)/s from P15 to P45). Similar increases in FA (approximately 0.3 to approximately 0.4 from P15 to P45) and decreases in ADC (approximately 0.8 x 10(-3) to approximately 0.5 x 10(-3) mm(2)/s from P15 to P45) were found in the cingulate, but these anisotropic changes were dominant in the anterior-posterior direction. In the caudate putamen, there were significant FA increases (approximately 0.1 to approximately 0.2 from P15 to P45) dominant in the dorsal-ventral and anterior-posterior directions, whereas the ADC increased rapidly early in development (approximately 0.3 x 10(-3) to approximately 0.7 x 10(-3) mm(2)/s from P15 to P17). There were no significant changes in tissue anisotropy in the somatosensory regions (whisker, forelimb), but the ADC decreased slightly (approximately 0.7 x 10(-3) to approximately 0.5 x 10(-3) mm(2)/s from P15 to P45). Although the major differences in DEC values were mainly observed in white matter pathways, other cortical and subcortical regions showed some potential morphological changes that were consistent with classical histological findings. In summary, these results show that high-resolution DTI at high magnetic fields allows detection and quantification of brain structures throughout normal development in C57B/L6 mice in vivo.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center