Send to

Choose Destination
See comment in PubMed Commons below
Cancer Res. 2006 Oct 15;66(20):10127-35.

Effective treatment of tumors with strong beta-catenin/T-cell factor activity by transcriptionally targeted oncolytic herpes simplex virus vector.

Author information

  • 1Molecular Neurosurgery Laboratory, Department of Neurosurgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts 02114, USA.


The Wnt/beta-catenin/T-cell factor (Tcf) pathway is aberrantly up-regulated in the majority of colorectal cancers (CRC) and hepatoblastomas due to either an APC or beta-catenin gene mutation. We constructed synthetic promoters, T and TE, which contain tandem repeats of a Tcf responsive element without and with the human 4F2 gene intronic enhancer, respectively. Although the T and TE promoters showed higher transcriptional activity than a control promoter in all CRC and hepatoblastoma cell lines tested, with low activities in most other tumor cell lines, the level of transcription varied considerably among the CRC and hepatoblastoma cell lines. In some CRC cell lines, the TE promoter displayed higher levels of transcription than even the human CMV(IE) promoter. In those CRC cells, the APC gene mutations were located within a small segment between the first and second 20-amino-acid repeats in the mutation cluster region of the APC protein. We created a transcriptionally targeted oncolytic herpes simplex virus vector (bM24-TE) in which replication is driven by the TE promoter. This vector efficiently and specifically replicated in and killed tumor cells with strong beta-catenin/Tcf signaling. Intratumoral injection of bM24-TE significantly reduced the growth of highly beta-catenin active SW480 CRC tumors and induced a complete response in half of them, whereas it had no effect on the growth of beta-catenin-inactive A549 tumors. Our results suggest that a transcriptionally regulated oncolytic herpes vector targeting beta-catenin/Tcf signal is very efficacious against CRC tumors carrying an APC gene mutation between the first and second 20-amino-acid repeats.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center