Format

Send to

Choose Destination
See comment in PubMed Commons below

Towards semantic role labeling & IE in the medical literature.

Author information

1
Center for Medical Informatics, Yale University School of Medicine, New Haven, CT, USA.

Abstract

INTRODUCTION:

In this work, we introduce the concept of semantic role labeling to the medical domain. We report first results of porting and adapting an existing resource, Propbank, to the medical field. Propbank is an adjunct to Penn Treebank that provides semantic annotation of predicates and the roles played by their arguments. The main aim of this work is the applicability of the Propbank frame files to predicates typically encountered in the medical literature.

METHODS:

We analyzed a target corpus of 610,100 abstracts, which was selected by searching for publication type "case reports". From this target corpus, we randomly selected 10,000 sample abstracts to estimate the predicate distribution, and matched the predicates from this sample to the predicates in Propbank.

RESULTS:

Of the 1998 unique verbs in our sample, 76% were represented in Propbank. This included the 40 most frequent verbs, which represented 49% of all predicate instances in our sample and which matched the Propbank usage in a study of representative sentences. We propose extensions to Propbank that handle medical predicates, which are not adequately covered by Propbank.

CONCLUSION:

We believe that semantic role labeling using Propbank is a valid approach to capture predicate relations in the medical literature.

PMID:
16779072
PMCID:
PMC1560806
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Support Center